
Transcendence: Enabling a Personal View of the Deep Web

Jeffrey P. Bigham, Anna C. Cavender, Ryan S. Kaminsky, Craig M. Prince and Tyler S. Robison
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195 USA

{jbigham, cavender, rkamin, cmprince, trobison}@cs.washington.edu

ABSTRACT
A wealth of structured, publicly-available information ex-
ists in the deep web but is only accessible by querying web
forms. As a result, users are restricted by the interfaces pro-
vided and lack a convenient mechanism to express novel and
independent extractions and queries on the underlying data.
Transcendence enables personalized access to the deep web
by enabling users to partially reconstruct web databases in
order to perform new types of queries. From just a few ex-
amples, Transcendence helps users produce a large number
of values for form input fields by using unsupervised infor-
mation extraction and collaborative filtering of user sugges-
tions. Structural and semantic analysis of returned pages
finds individual results and identifies relevant fields. Users
may revise automated decisions, balancing the power of au-
tomation with the errors it can introduce. In a user evalua-
tion, both programmers and non-programmers found Tran-
scendence to be a powerful way to explore deep web re-
sources and wanted to use it in the future.

ACM Classification H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.
General Terms Design, Human Factors, Algorithms

Author Keywords
Deep Web, Information Extraction, Web Forms

INTRODUCTION
The deep web consists of web information that is publicly
available but accessible only by querying web forms. This
prodigious resource of information is estimated to be 400 to
550 times larger than the surface web which is indexable by
traditional search engines [9]. Information in the deep web
is not easily crawled automatically, and, as a result, users
are limited in how they can use this information by the pro-
vided interface. In this paper, we introduce Transcendence,
a tool that enables users to issue multiple queries to online
resources in parallel, merge the results and perform types
of queries not supported by the original interface. The sys-
tem leverages unsupervised information extraction and col-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
IUI’08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain.
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00

laborative filtering to suggest relevant input values to web
forms and automatically detects the structure of the results,
enabling it to merge the output from multiple queries.

Online search tools are providing more features and flexibil-
ity to help users navigate the ever-increasing amount of data
in deep web resources: organizations are providing web in-
terfaces for their existing data and user communities are gen-
erating a wealth of new data. As an example, kayak.com
makes the common task of finding airline tickets on the web
easier through richer interfaces that enable users to spec-
ify flexible dates, acceptable nearby airports or a preference
for direct flights. Because user interface designers cannot
predict the needs of all users, the expressiveness of users’
searches are still restricted by the provided interfaces. Tran-
scendence provides a mechanism for users to easily specify a
crawler that can collect relevant data from the deep web and
expose it in a way that other web visualizers can consume.
Transcendence users can search for flights on kayak.com
with optional destinations that are not sufficiently near one
another to be suggested by the existing interface and can
search using dates that are weeks apart - neither of which
is supported by the current interface.

As another example, consider Jane, who is a new student
at the University of Washington looking for an apartment on

Results are merged onto the same page in context

along with the neighborhoods that produced them.

The user’s inputs and result fields

can be used to sort or filter results.

Figure 1. Craigslist results for Seattle neighborhoods sorted by price.

craigslist.org. Jane wants an apartment near the university,
but when she arrives at the Craigslist page for Seattle, she is
presented with numerous listings irrelevant to her, such as
ads for apartments in cities and neighborhoods far from the
university, such as in Renton or West Seattle. She knows
that the University District and University Village neighbor-
hoods are close to campus and decides to search using these
terms. Jane first enters both of these values into a search
field enhanced by Transcendence. Transcendence general-
izes the provided phrases to find others that likely belong to
the same implicit class - in this case, Wedgewood, Greenlake
and Capitol Hill, which are neighborhoods close to campus.
The system also returns several questionable suggestions,
such as the University of Washington and the University Dis-
trict Street Fair, which are not neighborhoods. The former
produces results that include University of Washington in
them and therefore may be popular with students, while the
latter produces no results and, therefore, has no end effect.

Transcendence issues queries for all of these terms in paral-
lel and combines the results in context on a Craigslist results
page (Figure 1). Transcendence has automatically identified
fields appearing in the results that may be important to Jane,
including the price of the apartment and the neighborhood
where it is located, and provides an interface that enables
her to sort and filter results based on these fields. Using the
Transcendence data analyzer, Jane computes the average and
median prices for apartments in these areas. Transcendence
enabled her to find a nice studio in the Greenlake neighbor-
hood near a park for less than she would have spent on a
similar apartment in University Village. Without Transcend-
ence, Jane would have had to first find the names of neigh-
borhoods near the university and then issue separate queries
for each, which could have required her to visit multiple sites
and keep multiple browsing windows open in order to com-
pare results. With Transcendence, she needed to perform
little more than a single search on Craigslist.

Most attempts to explore the deep web have taken the form
of automatic web crawlers [24, 29, 27]. Separate systems
have leveraged the structure of web content to enable users
to analyze, manipulate and store web information in new
ways [5, 21, 15] and other systems facilitate novel mashups
of data from disparate sources [8, 32, 19]. Transcendence
combines intelligent automated methods with a user inter-
face integrated into the web browser to facilitate an active
role for users in the exploration of deep web resources, en-
abling them to quickly gather, restructure and visualize data
from the deep web.

Transcendence offers the following contributions:

• Transcendence enables web forms to be generalized over
many values, resulting in simultaneous and specialized
web database searches.

• Transcendence integrates the process of filling out web
forms with unsupervised information extraction, leverag-
ing a few example inputs to produce many more.

• Transcendence assists users in selecting information that
is important to them and exports collected data to tools
that enable users to interpret and analyze it.

EXAMPLE USE CASES
Transcendence has many possible applications. Any time
there is data hidden behind a web-form that is not easily ac-
cessible, our system can help extract it. The following appli-
cations are especially compelling.

Aggregated Data
Many websites include user ratings, prices, or other numer-
ical information about specific products or items; however,
few sites also include the ability to give aggregated infor-
mation about these values. For example, consider a movie
review website like imdb.com. Is a rating of 7 out of 10 a
good rating or a poor rating? How are the ratings of movies
distributed? How many movies have a perfect 10 rating?
These questions would be difficult for the average user to
answer as it would require writing a customized crawler and
then visiting a number of pages with the crawler to collect
data. This crawler is quickly defined with Transcendence.

We used Transcendence to automatically extract the ratings
for 2000 movies from imdb.com and to generate a histogram
of these values (Figure 2-a). We began the experiment by
manually generalizing the search box on the main page us-
ing the following four movie titles: “The Matrix,” “Rocky,”
“Scent of a Woman,” and “Star Wars.” From these initial
seed values, the system was able to further generalize to
7142 additional potential movie titles. We ran the extraction
process on the top 2000 of these entries, which took approx-
imately two hours to complete. From the collected data, we
were able to see that very few movies receive a rating lower
than a 3.8/10.0 or higher than 8.8/10.0 rating on imdb.com.
Also, the average is skewed toward the high end of the scale.

Similarly, the tradeoff between the price of airline tickets
and the total time of a flight is often an important purchasing
factor for many people, and yet is difficult to extract from
existing web forms. Our system can extract a large number
of airline fares including the ticket price, the trip time, and
the total travel time. These can then be mapped using a scat-
ter plot to give the user interesting information that they can
use to determine what is and isn’t a good fare. Transcend-
ence generated a scatter plot using data collected during the
first task in our user evaluation (Figure 2-b). Notice how the
cheapest ticket price does not have the longest flight time!

Mapping Locations
Many sites offer directories of store locations. Access to the
directories often involves inputting an address, city, state or
postal zip code. Unfortunately, there is rarely a complete
listing of all the store locations. Transcendence can general-
ize across the fields, crawl the results, and aggregate them.
It can then map these locations to give the user an overview
of all the store locations. Figure 2-c shows a Google map of
Best Buy locations (4 per state) automatically generated by
our system. The system does not always produce a complete
list but quickly provides an overview. For example, it failed
to generalize the phrase “Florida” in this example - Montana
and Wyoming have no Best Buy stores.

Directory Information
Online directories often attempt to maintain privacy by not
including a complete listing of individuals within the direc-

tory. Instead they offer a web form which allows a person to
search for a specific individual. Because Transcendence can
generalize over names, it can partially reconstruct the under-
lying databases by issuing queries for the names it gener-
ates. The automated nature of the system demonstrates the
power of the system and raises legitimate privacy concerns.
We tested this by automatically extracting entries from the
University of Washington online directory. We first manu-
ally generalized the “name” field of the form by entering the
common surnames “Allen,” “Smith,” and “Johnson,” sug-
gested by a potential user of the system. We then generalized
these examples to 10,063 more possible surnames. While
some names produced no results, the resulting extractions
overall produced 51,223 unique names and emails.

RELATED WORK
Related work generally falls in the following categories: (i)
user interfaces designed to assist users in customizing and
improving their web experience and (ii) automated crawlers
operating over the deep web.

Collecting and Manipulating Web Information
Transcendence builds from existing systems that enable users
to flexibly manipulate, store and merge data from pages that
they have identified. User scripting systems, such as Grease-
monkey [28] and Chickenfoot [10], modify web pages ac-
cording to user specifications. Piggy-Bank users can write
scripts to extract information from web pages and store that
information in a semantic web database [5] and Solvent fa-
cilitates the creation of Piggy-Bank scripts with visual tools
[6]. Koala uses loose parsing of natural language instruc-
tions to make such systems more usable [23].

Sifter automatically parses structured data from web pages
to enable advanced sorting and filtering [21]. Transcend-
ence enhances this behavior with semantic tagging of de-
sired fields and enables pages accessible only by querying
web forms to be retrieved. Both systems merge collected re-
sults and place them in context into the original web page.
The visual user interface provided by Transcendence to re-
fine automatically-selected fields in results pages is similar
to that provided by existing systems [6, 15, 31]. The in-
terface provided to select, manipulate and assign multiple
values to form elements is a novel extension of this idea.

Other systems provide limited support for finding multiple
web pages from which to extract data. Web Summaries au-
tomatically explores multiple links selected by the user [15]
but does not address form submission, required for explor-
ing the deep web. The cloning feature of Clip, Clone, Con-
nect (CCC) enables users to submit multiple form queries
and assign different values to them [18]. CCC requires users
to manually specify values for cloned input elements in a
separate window. Transcendence automatically generates
both relevant input values and enables users to refine these
choices in the main browsing window.

Many systems seek to provide convenient interfaces that en-
able web users to “mashup” existing web data in interest-
ing ways. Marmite allows users to select web data and then

Figure 2. Transcendence Visualizations: a) Histogram of user ratings
received by 2000 movies on imdb.com, b) Scatter plot showing price
on the x-axis and flight time (there and back) on the y-axis, c) Map
visualization of Best Buy stores in the U.S.

manipulate it in a familiar interface similar to a spreadsheet
[32]. Yahoo! Pipes uses the visual metaphor of a pipe in
a program that enables users to connect web resources [8].
d.mix enables web developers to easily copy mashed-up web
elements using parametric copies that include not only the
data but also the programmatic calls that produced them [19].
Existing mashup systems do not support exploration of the
deep web, but they could use the data gathered by Tran-
scendence. Tuchinda et al. described how such disparate
data sources could be connected using a programming-by-
demonstration interface to easily create interesting mashups
[30].

Systems that record web macros, such as Creo [17], PLOW
[22], and Turquoise [25], could enable users to automatically
retrieve pages but cannot generalize user input in order to
explore web forms. Creo generalizes text elements included
in macros using categorical information from the Open Mind
knowledge repository [17] but is not sufficiently general to
support many desirable deep web queries. Transcendence

1. Generalize Form Fields
Users select form fields and can assign
multiple values to them. The options to
automatically generate more are
displayed in a sidebar. 2. Choose Fields and Extract

Transcendence automatically chooses fields and
identifies useful records. Users can refine these
choices either on the page or in the sidebar.

3. Visualize Data
The records produced during extraction
are merged onto the original results page
and can be sorted/filtered directly on the
page, or viewed via an external visualizer

A sidebar representation of each
generalized field enables users to
select which values to include and
assists them in generating more.

Users can sort and filter based on
any generalized or selected fields.

Users can revise and add to the
automatically-selected fields and
view their current values and types.

A bar above each result shows the form
input values that produced it.

The 3 Steps of

Transcendence

Figure 3. Transcendence consists of 3 steps: Generalize, Extract, and Visualize. Users can generalize forms with multiple values, extract elements of
query results for further analysis, and visualize results.

incorporates ideas from web macro systems. Users define
forms that they want to explore by searching with that form
and can optionally select a link for Transcendence to follow
on result pages to bypass disambiguation pages.

Crawling the Deep Web
Existing tools for exploring the deep web resemble tradi-
tional surface web crawlers [24]. HiWE [29] and MetaQue-
rier [13] seek to automatically identify both web forms of
interest and the types of their fields. If successful, they sub-
mit appropriate values drawn from existing tables in order to
produce results pages to crawl. For instance, if a form field
is determined to have type “city,” then values for it can be
found in an existing table of cities. Transcendence does not
require appropriate, pre-existing tables and, instead, lever-
ages the implicit types from user input to provide more ap-
propriate lists. For example, a table listing the neighbor-
hoods in Seattle where students attending the University of
Washington tend to live is unlikely to exist in a general sys-
tem, but is incredibly useful for searching on craigslist.org.

Ntoulas et al. formalized a method by which both random
words and words mined from the results of queries to deep
web resources can be used as input to web form fields [27].
This process can be inefficient or impossible if appropriate
inputs are not easily found. In Transcendence, users help
bootstrap a directed search for relevant values to submit to
web forms. Transcendence does not seek to determine the
type of the input fields. Instead, it relies on collaborative fil-
tering and unsupervised information extraction to find phra-
ses similar to those input by the user.

This process is difficult to automate because it requires deep
web resources to be automatically identified and the schemas
representing the structured results that they return to be auto-

matically identified and matched with user queries [14]. To
the best of our knowledge, Transcendence is the first system
that leverages user input and unsupervised information ex-
traction in order to accomplish the difficult task of finding
appropriate input values for web forms.

USER INTERFACE
The Transcendence user interface appears as a sidebar in the
browser (a frame occupying its leftmost portion) as well as
augmentations to user-chosen web pages (Figure 3). Us-
ing Transcendence is logically broken into three tasks: (1)
Generalize, (2) Extract, and (3) Visualize. Transcendence
first performs each task automatically based on user input,
but users can revise these choices, representing a mixed-
initiative design [20].

Generalize
Transcendence submits multiple queries for users by gener-
alizing relevant web form fields. To make a text box (or other
form field) generalizable, users can right click on the object
itself and choose “Generalize Field” (or type CTRL-G) and
an area corresponding to the form field appears in the sidebar
on the left (Figure 3-1). Participants in a preliminary study
of the system had difficulty relating input elements with their
corresponding sidebar elements. To assist users, when in-
put fields are focused or the mouse is hovered above them,
the corresponding element in the sidebar is highlighted. The
user can use the sidebar element to enter several values for
the form field and can do this with multiple fields. Users can
submit their own values, or they can request that Transcend-
ence find even more similar values automatically (such as
more foods or more airport codes) by clicking a “Generate
More” button. Once the web form is submitted, the site’s

result page is displayed so that the user can define which of
the resulting elements will be extracted in the next step.

Extract
In order to allow users to easily extract and collect elements
of the results that are important for analysis, Transcendence
displays the output of one example query and assists users
by automatically selecting relevant elements to be extracted.
The automatic selection process occurs in two stages. The
first stage uses an algorithm in Sifter [21] to identify the re-
peating records on a results page. In the second stage, we
query the DOM of the first of the repeating records iden-
tified in the first stage for text nodes. Text nodes that are
contained in links or identified as Transcendence types are
automatically selected as fields of interest. Other nodes are
selected as fields of interest if they are identified as logical
containers of separate sections of text. Transcendence uses
the page structure to extrapolate all of the similar elements
in the results. For example, if a user decided they were in-
terested in the price and flight duration of one airline ticket
on a travel web site’s results page, Transcendence will find
all of the prices and their respective flight durations for each
flight in the list automatically. Users can revise and add to el-
ements automatically selected using a visual interface (Fig-
ure 3-2). Transcendence now uses all of the generalizations
the user defined in the previous step to extract the relevant
elements requested in this step.

Visualize
Transcendence allows users to restructure the output of mul-
tiple form queries to best suit their search needs. It displays
conglomerated results while maintaining the original page
structure (Figure 3-3). Users can change the order in which
results are displayed by sorting based on the extracted ele-
ments or filtering based on fields that were generalized. For
a more in-depth analysis, our visualization tool (Figure 3-3)
transforms the data into graphs, scatter plots, histograms, or
geographical displays.

TRANSCENDENCE SYSTEM
Figure 4 shows the architecture of Transcendence. The core
of the system is a Firefox Extension written in XUL and
Javascript. The extension is also responsible for coordinat-
ing with the PostgreSQL extraction database, the three auto-
matic generalizers, and the data visualizer. As described in
the User Interface section above, gathering data with Tran-
scendence consists of three main stages: generalize input,
extraction data, and visualize the results. Here, we describe
the system implementation in terms of these three steps.

Input Generalization
In Transcendence, input fields can be generalized by assign-
ing multiple values to them. Form elements usually only
have one value, which restricts the expressiveness of a form.
When searching for airline prices, users may want to fly from
either Seattle or Portland to either Newark or Philadelphia
depending on the price and other details of the flight. Tran-
scendence allows such extended queries to be expressed on

Generalizers

TranscendenceTranscendence

Firefox Extension

The

Web

Step 2:

Extract

Step 1:

Generalize

Step 3:

Visualize

Extraction

Database

Google

Maps

KnowItAll

Google Sets

Prior Input

Java Applet

Figure 4. System architecture diagram showing the components asso-
ciated with each step of using our system

existing web forms. The system allows textboxes to con-
tain multiple strings, checkboxes to be both checked and
unchecked, select boxes to be assigned multiple values, and
multiple radio buttons in the same group to be checked.

For all elements but textboxes, the space of input general-
ization is restricted by the element itself. In order to auto-
matically generalize textboxes, Transcendence asks users to
provide a few values and uses unsupervised information ex-
traction and suggestions ranked by collaborative filtering to
generate a number additional values likely to be appropriate.

Unsupervised Information Extraction
Unsupervised information extraction provides powerful tech-
niques for extracting structured information from unstruc-
tured web text. While adept at collecting lists of items, ex-
tracting the complex records characteristic of the deep web
is still too difficult. Although agnostic to the method used,
Transcendence uses KnowItAll [16] and Google Sets [2] for
their recall and speed, respectively. Transcendence uses these
systems unaltered, but employs them in the novel application
of providing inputs for form fields.

Transcendence utilizes the list extraction component of Know-
ItAll. List extraction proceeds iteratively, first taking as in-
put a series of seed values provided by the user and then
using them to generate a number of similar values, which it
uses to repeat the process. To extract additional items, the
system issues queries to Google for different combinations
of the seed values and analyzes the returned pages. If any
of these pages contain all of the seed values in a list, then
the other items in that list are extracted and saved for fu-
ture rounds. KnowItAll defines a list as being either comma-
delimited or all items appearing in the same column or row
of a table. KnowItAll is able to quickly compile large lists of
words given only a few instances, provided that these words
commonly appear in lists online.

The Transcendence Firefox extension receives a series of
seed words entered by the user and sends these to a Know-

ItAll server running on the client. The server first checks its
current records; if it has already conducted a generalization
run with those seeds, it simply sends the existing values back
to the user. If such a run is still processing, the server sends
back the generalizations collected so far. If there is no record
of such a run, one is started. In this way the results of many
searches can be collected and common search results will be
readily available.

The Google Sets web service takes up to 5 phrases as input
and returns up to 50 similar phrases in return [2]. Although
the mechanism powering it is unpublished, it is believed to
operate by associating the context of the entered phrases on
the web with other phrases found on the web. Google Sets
is desirable because it responds quickly, but it is limited to
only 50 results. KnowItAll is useful in conjunction for pro-
viding large numbers of generalizations. KnowItNow could
potentially provide the speed of Google Sets and the recall
of KnowItAll, but a public instantiation is unavailable [12].

Previous Inputs as Suggestions
A rich source of phrases are the phrases previously entered
by users. Transcendence records the phrases with which
users manually generalize form fields and retrieves them later
in response to new input. For instance, if a user enters the
surnames “Smith,” “Johnson” and “Allen” into a textbox, the
system can find other surnames such “Anderson,” “Harri-
son,” and “Baker” because they appear in similar contexts
on the web. If another user later queries the system with
“Leung,” “Johnson,” and “Ordway,” then Transcendence can
consider returning “Smith” and “Allen” because “Johnson”
appeared in both lists.

Phrases retrieved in this way are assigned a weight equal
to the number of elements in the intersection of the user-
provided list and the lists containing common phrases. Google
Suggest provides a similar service for suggesting search key-
words [3]. The results are combined with those retrieved us-
ing unsupervised information extraction. Such combinations
have been explored previously [11].

Data Extraction
The web page that is returned as the result of submitting a
web form can either present a single data record, such as the
movie information provided by the Internet Movie Database
(IMDB), or an array of data records, such as the many flight
choices returned by kayak.com. Transcendence employs a
user-centered data extraction algorithm that can accommo-
date both cases. When stage two begins, Transcendence au-
tomatically selects important fields. Users can then add new
fields or remove selected fields from one result set (such as
one flight or one apartment listing) until all desired fields are
selected. From those selections Transcendence is able to au-
tomatically determine the DOM element most likely to rep-
resent a complete record and can generalize to detect other
records on similar pages.

When a field is selected, the system first determines an XPath
for the given node [7]. We assume that the visual layout of
the data on the page follows its structural organization, and,
therefore, the field is likely to share a common parent in the

DOM tree with other fields in the same data record. For
pages containing only one data record, that body is the root
of the DOM. To extract the likely parent nodes, Transcend-
ence uses a process based on finding the common parent of
the fields that maximizes visual layout while preserving the
cardinality of the set of matching records [21]. As additional
fields are selected (automatically or by users), the system can
better estimate which node is most closely associated with
each record.

The system next assigns an XPath to each record and a rela-
tive XPath from each record to each field contained within it.
In order to capture as many records as possible, the system
calculates a general XPath to each record that includes only
tag names, for example /html/body/div/table/tr. To identify
each field within a record, the system assigns a more specific
XPath, such as td[3]/b[@class=“pricing”]. When records
are matched, at least 80% of the identified fields must also
be present. These steps help eliminate spurious matches of
fields while remaining general in matching records.

Document Preprocessing
The selection of both fields and records relies on the exis-
tence of matching, underlying DOM elements, but a DOM
element that uniquely contains only the elements of a sin-
gle record does not always exist. To improve robustness to
this type of failure, Transcendence employs two preprocess-
ing steps that add semantic structure to the existing DOM.
First, the system improves pages that express records us-
ing sequential patterns of elements instead of using sepa-
rate DOM elements. Such examples are generally difficult
for DOM-based extraction systems. To address this problem
we use a recursive process inspired by Mukherjee et al. to
add additional elements to the DOM to accurately express
records characterized by repeating elements [26]. Figure 5
demonstrates how additional elements are added as
parents of the result of this preprocessing on a simple exam-
ple in which records consist of an <h2> and a <p> ele-
ment. After preprocessing this example, the records can be
identified and selected using the new elements.

Figure 5. Our preprocessing step inserts additional elements into the
DOM model to assist in extracting list items

Promoting text nodes containing common semantic types to
element nodes ensures that the fields they represent are se-
lectable. For instance, the text string “User Rating: 7.3/10.0”
is contained within a single text node and so the extraction
mechanism will allow users to select only the entire string
and not just the rating (7.3). Transcendence promotes text

matching certain semantic patterns to selectable elements.
Currently, the system supports author, currency, date, num-
ber, URL, and acronym types. Other systems enable users
to provide either a regular expression that should match text
within the selected node [6] or text that will define the region
[15]. Sifter automatically chooses an appropriate represen-
tation of each field [21]. By exposing low-level data types,
Transcendence facilitates easier selection of fields.

Crawling
During the final extraction step, Transcendence submits each
combination of the generalized input fields, and extracts any
matching records from the resulting pages. The input form
is first loaded in a hidden, off-screen browser window and
the value of each input field is programmatically set. Be-
fore submitting the form, Transcendence calls any onsub-
mit events that are registered with the input form, which of-
ten prepares the input data. Transcendence next submits the
form and waits for the results page to load. When it does,
the page is preprocessed and matching records are extracted.

Transcendence can make extractions from highly-dynamic,
AJAX-driven deep web resources. The content on tradi-
tional web pages does not change after it is downloaded, but
this assumption does not hold for many deep web resources.
For example, a search on kayak.com immediately returns
an initial results page, but the page updates as additional
flights are found. Determining when a dynamic web page
is finished updating is intractable, but Transcendence uses
simple heuristic that enables it to efficiently extract informa-
tion from dynamically-updating pages. The system observes
the initial search in order to determine if the page content
changes and, if so, approximately how long it should expect
to wait for it to finish. During this interaction, the system
records both the number of page loads that occur and the to-
tal time that elapses between when the web form was submit-
ted and the page content stops changing. When the user se-
lects a field, this indicates to the system that the user believes
the page has stopped changing. Page changes are recorded
by periodically (every 2 seconds) saving a hash value repre-
senting the text content of the current DOM and comparing
it to the previous recording. Transcendence decides when
to stop extracting based on the following three conditions:
(i) it has waited 1.5 times longer than the original form sub-
mission document took to stop changing, (ii) the maximum
number of loads has been reached, or (iii) it has extracted a
sufficient number of matching records.

Transcendence uses multiple, simultaneous crawling threads.
With ten threads operating in parallel, it can wait up to a
minute for each page to finish downloading and still be able
to parse a new page of results every six seconds. This offers
users a huge advantage compared to waiting for the serial
execution of multiple manual queries. For large extractions,
the system throttles its extraction rate.

Visualization
Once Data Extraction is complete, the final step is to visual-
ize and utilize the data effectively. Transcendence provides
two powerful visualizations methods. First, it can display

each recorded extraction in-place in the original web page.
The system adds an information bar above each, so users
can easily see which input values produced each result (Fig-
ure 3). An interface in the sidebar allows users to sort the
extracted records based on any of the input form fields or
extraction fields. Users may also elect to show only records
generated from specific inputs. The results displayed by the
system are added to the original results page and are re-
ordered and refreshed based on these options. Future ver-
sions of our system will integrate additional in-place visual-
ization inspired by other work in this area [15, 18].

The data gathered by Transcendence can also be incorpo-
rated into external programs. The provided data visualizer
allows users to view the data that they have collected us-
ing the following methods: Table of Values, Histogram, Bar
Chart, Line Chart, Scatter Plot, and Google Maps. The visu-
alizer is a web-based Java Applet that connects to the extrac-
tion database. The user is presented with a table containing
a row for each generalized field. Each row has the following
columns: field name, field type, and a visualization-specific
column. The visualizer uses JFreeChart [4] to build plots
and graphs, and the Google Maps API to geocode addresses
and display them [1]. The applet connects to the database
holding the extracted results, calls the appropriate API to
visualize the data, and enables powerful exploration of ex-
tracted data.

GENERALIZATION ASSESSMENT
We evaluated the ability of Transcendence to generalize us-
ing the KnowItAll list extractor from phrases provided by
users because it provides the most generalized phrases in
large extractions. Twenty computer science students were
asked to provide three examples from several different classes
including airport codes, surnames and computer science con-
ferences, which could be useful in searching for flights, di-
rectory information and academic publications, respectively.
Although the performance of the KnowItAll list extractor
has been explored before in the context of automatic infor-
mation extraction [16], we were interested to see how it per-
formed on a limited number of user-provided examples.

We were most interested in the recall of the generalizing pro-
cess. Recall is the number of correct phrases produced com-
pared to the total number of correct phrases. While incorrect
generalizations will increase the overall time Transcendence
requires to run, it will not affect the correctness of the re-
sults returned. This is because inappropriate fields will not
produce valid results and, in the event that they do, users can
easily filter out the incorrect inputs after extraction.

To determine correctness, we used an FAA list of airport
codes, the top 10,000 surnames from the U.S. census and a
large list of computer science conferences. While not neces-
sarily complete, they are of sufficient size to gauge a reason-
able estimate of recall, although reported precision should
be, therefore, considered a lower bound. These lists already
exist online, but we believe they are representative of other
lists users may want to create that are not available online.
None of these lists were used by KnowItAll in the general-
izing process - they were all accessible only by a web form.

Accuracy of Generalizations

0

1000

2000

3000

4000

5000

Surnames CS Conferences Airport Codes

A
v
e
ra

g
e
 G

e
n

e
ra

li
z
a
ti

o
n

s

Correct Incorrect

Successful Generalization Rate

0

5

10

15

20

25

Surnames CS Conferences Airport Codes

G
e
n

e
ra

li
z
a
ti

o
n

 R
u

n
s

Successful Runs Unsuccessful Runs

Average Time for First Results

0

20

40

60

80

100

120

140

160

Surnames CS Conferences Airport Codes

S
e
c
o

n
d

s

Average First-Cycle Time

Generalizations over Time

0

10000

20000

30000

40000

50000

30 60 90 120 150 180
Run Length in Minutes

#
 o

f
G

e
n

e
ra

li
z
a
ti

o
n

s

Correct Incorrect

Figure 6. a) Average time to generate the first round of generalizations, or to fail if none are found. b) Percentage of runs that successfully found new
generalizations. c) Lower bound accuracy of generalizations per category. d) Lower bound accuracy of a single run of surnames.

We also logged the time required for each run. In the event
that the system cannot generalize based on the input seeds
provided by the user, the system should fail quickly, so the
user can supply additional terms.

The generalization process used the input of participants to
collect similar terms and was allowed to run either until it
failed to find new extractions, or until a maximum number
of three iterative extraction cycles was reached. This restric-
tion was introduced to allow us to perform a large number of
searches; in real use, the system could generate many more
results. Some runs immediately failed to find similar terms,
and so terminated early in the generalization process, typi-
cally in less than 30 seconds. Although the typical runtime
was around 20 minutes, intermediate generalizations were
produced approximately every two minutes.

The first generalizations were returned in about one minute
(Figure 6-a). At this point, users could evaluate the returned
results and optionally decide to provide more seed terms. Al-
though generalization initially failed in half of the cases, pro-
viding a few additional seed inputs is likely to succeed (Fig-
ure 6-b). Both surnames and airport codes were extracted
with nearly 50% precision, while CS conferences only with
10% (Figure 6-c). This resulted both from CS conferences
with acronyms with multiple meanings (which caused the
generalization to diverge) and from under-reported precision
due to non-comprehensive lists. The number of new gener-
alizations grew slowly after an initial burst (Figure 6-d).

USER EVALUATION
In order to investigate the usability and perceived value of
Transcendence, we conducted a study with nine potential
Transcendence users ranging in age from 20 to 46 years (6
female). All of the participants had experience with brows-
ing the web. Five described themselves as at least being
novice web programmers and the remaining four said they
had no web programming experience. We intentionally chose
participants with varied programming experience because
we hope to ensure that anyone with web browsing (and not
necessarily web programming) experience can understand
and use Transcendence.

Participants were first given an explanation of the system’s
functionality and shown an example using google.com. The
example involved submitting multiple search queries for a
person’s name: their first and last name with no middle name,
with a middle initial, and with their middle name spelled out.
Participants were shown how to sort and filter the results,

how to generate a table of resulting values, and shown how
they could create line graphs, pie charts, or maps of their
data if in numeric or geographic form.

We then asked participants to perform three unstructured
tasks using Transcendence. The first was to search for an
apartment using craigslist.org. Participants were asked to
generalize the search field and to enter a few neighborhoods
in which they might look for an apartment. After they had
done this, participants were asked to use the “Generate More”
feature to produce more neighborhoods. They next sub-
mitted the original form, optionally revised the selection of
fields automatically chosen by the system and then ran their
extraction.

For the second task, participants used kayak.com to de-
cide which airport would be best for a hypothetical upcom-
ing trip. We told them they could either leave from Seat-
tle (SEA) or Portland (PDX) and arrive at either Columbus
(CHM) or Detroit (DTW). Their hypothetical dates of travel
were flexible with two different possible departure dates and
a specific returning date. The main priority was to find the
best price, so long as the total flight time was reasonable to
them.

The third task was to visualize the geographic distribution of
REI stores across the United States. Participants were asked
to go to the Store Finder at www.rei.com and to create a
list of all REI stores by generalizing over all states, then map
them based on the store address.

After completing the three tasks, participants answered a
short, 20-question survey about their experience. Results of
the 7-point Likert scale questions can be found in Figure 7.
The remaining questions on the survey asked about (1) as-
pects of the system were hard to use, hard to understand, or
not useful, (2) changes to the system participants would like
to see, and (3) other potential tasks for which the participants
might use this system. Overall, the study took approximately
30 minutes on average.

Nearly all participants agreed that Transcendence is a use-
ful, powerful tool for finding information that would oth-
erwise be difficult to manually recreate (Figure 7). Most
thought that it was not at all or only mildly tedious to use.
They agreed that they would use it in the future and doing
so would save them time. Perhaps due to the shortness of
the study, we received mixed results regarding the difficult
of learning Transcendence. Most participants thought it was
relatively easy to learn, but a handful found it difficult to

3. I could use Transcendence to find useful information.

1. Transcendence is difficult to learn how to use.

9. Automatic selection of fields is useful.

11. I would use Transcendence in the future if was available.

10. Transcendence would save me time.

8. Generalization of input fields is useful.

7. Transcendence is useful for performing the tasks in this study.

6. Manually recreating Transcendence’s functionality would be time-consuming.

5. Manually recreating Transcendence’s functionality for a specific

 web site would be difficult.

4. Transcendence is powerful

 (it could allow me to easily accomplish difficult tasks).

2. Transcendence is tedious to use.

1 7

1 7

1 7

1 7

1 7

1 7

1 (strongly disagree) to 7 (strongly agree)

Ease of Use

Value
1 (strongly disagree) to 7 (strongly agree)

Programmers Non-Programmers Combined

Figure 7. Results of a questionnaire given to participants after exploring Transcendence, indicating that they found Transcendence useful and
powerful (3,4,8,9), felt that manually recreating its functionality would be difficult (5,6) and that they would likely use it in the future (10,11).

learn to use the system. Many of these concerns were voiced
in the open-ended portion of the questionnaire.

Some participants had difficulty relating the visual elements
on the source web page to the query variables in Transcend-
ence. Nearly all participants requested some additional form
of transparency: they wanted to see more of what was go-
ing on while they waited for queries to be performed and
they wanted better feedback regarding failed or unexpected
search results. For example, one participant conducted an
initial search using states in which no REI stores are located.
The search produced no results that could be used to select
desirable fields and this was disorienting for the participant.
A clear separation, yet convenient integration of Transcend-
ence and source web pages, along with more robust handling
of errors, is needed and will be an interesting direction for
future versions of the system.

Participants provided many feature requests for future ver-
sions of Transcendence. The ability to search multiple web
pages (such as both amazon.com and froogle.com) was
a popular suggestion. One participant suggested the ability
to pipeline the results from one search onto the next in a
mashup fashion. For example, after using Transcendence to
decide on a flight itinerary, one could automatically check
the weather forecast in the layovers and destinations.

The generalization feature received mixed reviews. While
all participants agreed that it was useful for the tasks in the
study, some questioned the value of creating lists not guar-
anteed to be complete. Several participants were pleasantly
surprised during the Craigslist task when a neighborhood in
which they would consider living but had forgotten to list
was automatically added to the list. In the REI task, the
system was able to generalize to all 50 states based on the
participants’ input of 3-4 states in all but two cases.

Participants liked the automatic selection of fields, which is
a nice result given that the time required to do this manu-
ally in a previous version of the system had been a consistent
complaint. Two participants mentioned that they would have
liked to have been able to select the number of bedrooms as
a field in the Craigslist task, but this is not currently possi-
ble because this information appeared in a block of text not
identified as a semantic type.

Many of our study participants could imagine themselves us-
ing Transcendence for travel tasks such as searching for and
mapping hotels or for comparison shopping. One participant
hoped to use it to help search for people who go by both their
given name and a nickname, such as both Ben and Benjamin.
The participants all found the task that involved searching
on kayak.com to be the most compelling and many asked if
Transcendence would be made available specifically so they
could use it for that task.

CONCLUSIONS & FUTURE WORK
We have created Transcendence and demonstrated its ability
to provide a more flexible and powerful interface to the deep
web. Participants found the system to be a powerful way to
explore deep web resources and have expressed interest in
using it in the future.

We plan to further explore the power of using unsupervised
information extraction to help users explore the deep web.
Many fields on the web are implicitly connected - for exam-
ple fields for cities and states - and we plan to explore inter-
faces for expressing these relations. The browser platform
may be inconvenient for performing large extractions. After
crawlers have been defined by the user, they could be com-
bined to create custom vertical search engines or exported
to an extraction platform where extended crawls would be

more convenient. They could also be shared, enabling new
users to immediately leverage the crawlers created by exist-
ing users.

ACKNOWLEDGMENTS
We thank Mira Dontcheva for invaluable discussions, the
University of Washington Turing Center for providing ac-
cess to the KnowItAll list extractor, and participants in our
user evaluation for their creative and valuable feedback.

REFERENCES
1. Google Maps API. http://www.google.com/apis/maps/.
2. Google Sets. http://labs.google.com/sets/.
3. Google Suggest. http://labs.google.com/suggest/.
4. JFreeChart. http://www.jfree.org/jfreechart/.
5. Piggy bank. http://simile.mit.edu/piggy-bank/.
6. Solvent. http://simile.mit.edu/solvent.
7. XML path language (XPath) version 1.0.
8. Yahoo pipes. Yahoo! Inc. (2007). http://pipes.yahoo.com/.
9. Bergman, M. K. The deep web: Surfacing hidden value.

The Journal of Electronic Publishing, 7, 1.
10. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller,

R. C. Automation and customization of rendered web
pages. In Proc. of the 18th Symp. on User Interface
Software and Technology (UIST ’05). Seattle, WA, USA,
2005, 163–172.

11. Burke, R. Integrating knowledge-based and
collaborative-filtering recommender systems. In Proc. of
the Workshop on AI and Electronic Commerce (AAAI ’99).

12. Cafarella, M. J., Downey, D., Soderland, S., and Etzioni,
O. Knowitnow: fast, scalable information extraction from
the web. In Proc. of the Conf. on Human Language
Technology and Empirical Methods in Natural Language
Processing (HLT ’05). Association for Computational
Linguistics, Morristown, NJ, USA, 2005, 563–570.

13. Chang, K. C.-C. and He, B. Toward large scale integration:
Building a metaquerier over databases on the web. In In
Proc. of the 2nd Conf. on Innovative Data Systems
Research. 2005.

14. Doan, A., Domingos, P., and Halevy, A. Y. Reconciling
schemas of disparate data sources: a machine-learning
approach. In Proc. of the 2001 ACM SIGMOD Intl. Conf.
on Management of data (SIGMOD ’01). 2001, 509–520.

15. Dontcheva, M., Drucker, S. M., Wade, G., Salesin, D., and
Cohen, M. F. Summarizing personal web browsing
sessions. In Proc. of the 19th annual ACM symposium on
User interface software and technology (UIST ’06). New
York, NY, USA, 2006, 115–124.

16. Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M.,
Shaked, T., Soderland, S., Weld, D. S., and Yates, A.
Methods for domain-independent information extraction
from the web: an experimental comparison. In Proc. of the
19th Natl. Conf. on Artificial Intelligence (AAAI ’04).
2004.

17. Faaborg, A. and Lieberman, H. A goal-oriented web
browser. In Proc. of the SIGCHI Conf. on Human Factors
in Computing Systems (CHI ’06). Montreal, Quebec,
Canada, 2006, 751–760.

18. Fujima, J., Lunzer, A., Hornbaek, K., and Tanaka, Y. Clip,
connect, clone: combining application elements to build
custom interfaces for information access. In Proc. of the
17th Symp. on User Interface Software and Technology
(UIST ’04). 2004, 175–184.

19. Hartmann, B., Wu, L., Collins, K., and Klemmer, S.
Programming by a sample: Rapidly prototyping web
applications with d.mix. In In Proceeding of the 20th
Symp. on User Interface Software and Technology (UIST
’07). Newport, RI, USA, 2007.

20. Horvitz, E. Principles of mixed-initiative user interfaces. In
Proc. of the SIGCHI Conf. on Human factors in computing
systems (CHI ’99). 1999, 159–166.

21. Huynh, D. F., Miller, R. C., and Karger, D. R. Enabling
web browsers to augment web sites’ filtering and sorting
functionalities. In Proc. of the 19th Symp. on User
Interface Software and Technology (UIST ’06). ACM
Press, New York, NY, USA, 2006, 125–134.

22. Jung, H., Allen, J., Chambers, N., Galescu, L., Swift, M.,
and Taysom, W. One-shot procedure learning from
instruction and observation. In Proc. of the Intl. FLAIRS
Conf.: Special Track on Natural Language and Knowledge
Representation.

23. Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M., and
Kandogan, E. Koala: capture, share, automate, personalize
business processes on the web. In Proc. of the SIGCHI
Conf. on Human Factors in Computing Systems (CHI ’07).
2007, 943–946.

24. Madhavan, J., Halevy, A., Cohen, S., Dong, X., Jeffrey,
S. R., Ko, D., and Yu, C. Structured data meets the web: A
few observations. IEEE Computer Society: Bulletin of the
Technical Committee on Data Engineering, 31, 4 (2006),
10–18.

25. Miller, R. C. and Myers, B. Creating dynamic world wide
web pages by demonstration (1997).

26. Mukherjee, S., Yang, G., Tan, W., and Ramakrishnan, I.
Automatic discovery of semantic structures in html
documents. In Proc. of the Intl. Conf. on Document
Analysis and Recognition (ICDAR ’03). 2003.

27. Ntoulas, A., Zerfos, P., and Cho, J. Downloading textual
hidden web content through keyword queries. In Proc. of
the 5th ACM/IEEE-CS joint Conf. on Digital libraries.
1995, 100–109.

28. Pilgrim, M., ed. Greasemonkey Hacks: Tips & Tools for
Remixing the Web with Firefox. O’Reilly Media, 2005.

29. Raghavan, S. and Garcia-Molina, H. Crawling the hidden
web. In Proc. of the 27th Intl. Conf. on Very Large
Databases (VLDB ’01). 2001.

30. Tuchinda, R., Szekely, P., and Knoblock, C. A. Building
data integration queries by demonstration. In Proc. of the
12th Intl. Conf. on Intelligent User Interfaces (IUI ’07).
ACM Press, New York, NY, USA, 2007, 170–179.

31. Turner, S. R. Playtpus firefox extension (2006).
http://platypus.mozdev.org/.

32. Wong, J. and Hong, J. I. Making mashups with marmite:
towards end-user programming for the web. In Proc. of the
SIGCHI Conf. on Human Factors in Computing Systems
(CHI ’07). ACM Press, 2007, 1435–1444.

