
TrailBlazer: Enabling Blind Users to Blaze Trails
Through the Web

Jeffrey P. Bigham
Dept. of Computer Science and Engineering

University of Washington
Seattle, WA 98195 USA

jbigham@cs.washington.edu

Tessa Lau and Jeffrey Nichols
IBM Almaden Research Center

650 Harry Rd
San Jose, CA 95120 USA

{tessalau, jwnichols}@us.ibm.com

ABSTRACT
For blind web users, completing tasks on the web can be
frustrating. Each step can require a time-consuming lin-
ear search of the current web page to find the needed in-
teractive element or piece of information. Existing inter-
active help systems and the playback components of some
programming-by-demonstration tools identify the needed el-
ements of a page as they guide the user through predefined
tasks, obviating the need for a linear search on each step.
We introduce TrailBlazer, a system that provides an acces-
sible, non-visual interface to guide blind users through ex-
isting how-to knowledge. A formative study indicated that
participants saw the value of TrailBlazer but wanted to use it
for tasks and web sites for which no existing script was avail-
able. To address this, TrailBlazer offers suggestion-based
help created on-the-fly from a short, user-provided task de-
scription and an existing repository of how-to knowledge.
In an evaluation on 15 tasks, the correct prediction was con-
tained within the top 5 suggestions 75.9% of the time.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces; K.4.2 Social Issues: Assistive technologies for per-
sons with disabilities

General Terms
Human Factors, Design, Algorithms

Author Keywords
Non-Visual Interfaces, Web Accessibility, Programming by
Demonstration, Suggestions, Blind Users

INTRODUCTION
For blind web users, completing tasks on the web can be
time-consuming and frustrating. Blind users interact with
the web through software programs called screen readers.
Screen readers convert information on the screen to a linear
stream of either synthesized voice or refreshable Braille. If

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI 2009, February 8 - 11, 2009, Sanibel Island, Florida, USA.
Copyright 2009 ACM 978-1-60558-331-0/09/02...$5.00.

Time Card CoScript
1. goto “http://www.mycompany.com/timecard/”
2. enter “8” into the “Hours worked” textbox
3. click the “Submit” button
4. click the “Verify” button

Figure 1. A CoScript for entering time worked into an online time card.
The natural language steps in the CoScript can be intrepreted both by
tools such as CoScripter and TrailBlazer, and also read by humans.
These steps are also sufficient to identify all of the web page elements
required to complete this task – the textbox and two buttons. Without
TrailBlazer, steps 2-4 would require a time-consuming linear search for
screen reader users.

a blind user needs to search for a specific item on the page,
they either must listen to the entire linear stream until the
goal item is reached or they may skip around in the page
using structural elements, such as headings, as a guide. To
become proficient, users must learn hundreds of keyboard
shortcuts to navigate web page structures and access mouse-
only controls. Unfortunately, for most tasks even the best
screen reader users cannot approach the speed of searching
a web page that is afforded to sighted users [5, 23].

Existing repositories contain how-to knowledge that is able
to guide people through web tasks quickly and efficiently.
This how-to knowledge is often encoded as a list of steps
that must be perfomed in order to complete the task. The
description of each step consists of information describing
the element that must be interacted with, such as a button or
text box, and the type of operation to perform with that ele-
ment. For example, one step in the task of buying an airplane
flight on orbitz.com is to enter the destination city into the
text box labeled “To”. One such repository is provided by
CoScripter [15], which contains a collection of scripts writ-
ten in a “sloppy” programming language that is both human-
and machine-understandable (Figure 1).

In this paper, we present TrailBlazer, a system that guides
blind users through completing tasks step-by-step. Trail-
Blazer offers users suggestions of what to do next, automat-
ically advancing the focus of the screen reader to the inter-
active element that needs to be operated or the information
that needs to be heard. This capability reduces the need for
time-consuming linear searches when using a screen reader.

TrailBlazer was created to support the specific needs of blind
users. First, its interface explicitly accomodates screen read-

ers and keyboard-only access. Second, TrailBlazer augments
the CoScripter language with a “clip” command that speci-
fies a particular region of the page on which to focus the
user’s attention. A feature for identifying regions is not in-
cluded in other systems because it is assumed that users can
find these regions quickly using visual search.

Third, TrailBlazer is able to dynamically create new scripts
from a brief user-specified description of the goal task and
the existing corpus of scripts. Dynamic script creation was
inspired by a formative user study of the initial TrailBlazer
system, which confirmed that TrailBlazer made the web more
usable but was not helpful in the vast majority of cases where
a script did not already exist. To address this problem, we
hypothesized that users would be willing to spend a few mo-
ments describing their desired task for TrailBlazer if it could
make them more efficient on tasks lacking a script. The ex-
isting repository of scripts helps CoScripter to incorporate
knowledge from similar tasks or sub-tasks that have already
been demonstrated. Building from the existing corpus of
CoScripter scripts and the short task description, TrailBlazer
dynamically creates new scripts that suggest patterns of in-
teraction with previously unseen web sites, guiding blind
users through sites for which no script exists.

As blind web users interact with TrailBlazer to follow these
dynamically-suggested steps, they are implicitly supervising
the synthesis of new scripts. These scripts can be added to
the script repository and reused by all users. Studies have
shown that many users are unwilling to pay the upfront costs
of script creation even though those scripts could save them
time in the future [13]. Through the use of TrailBlazer,
we can effectively reverse the traditional roles of the two
groups, enabling blind web users to create new scripts that
lead sighted users through completing web tasks.

This paper makes the following three contributions:

• An Accessible Guide - TrailBlazer is an accessible inter-
face to the how-to knowledge contained in the CoScripter
repository that enables blind users to avoid linear searches
of content and complete tasks more efficiently.
• Formative Evaluation - A formative evaluation of Trail-

Blazer illustrating its promise for improving non-visual
access, as well as the desire of participants to use it on
tasks for which a script does not already exist.
• Dynamic Script Generation - TrailBlazer, when given a

natural language description of a user’s goal and a pre-
existing corpus of scripts, dynamically suggests steps to
follow to achieve the user’s goal.

RELATED WORK
Work related to TrailBlazer falls into two main categories:
(i) tools and techniques for improving non-visual web ac-
cess, and (ii) programming by demonstration and interactive
help systems that play back and record how-to knowledge.

Improving Web Accessibility
Most screen readers simply speak aloud a verbal descrip-
tion of the visual interface. While this enables blind users

to access most of the software available to sighted people,
they are often not easy-to-use because their interfaces were
not designed to be viewed non-visually. Emacspeak demon-
strated the benefits to usability resulting from designing ap-
plications with voice output in mind [21]. The openness of
the web enables it to be adapted it for non-visual access.

Unfortunately, most web content is not designed with voice
output in mind. In order to produce a usable spoken interface
to a web site, screen readers extract semantic information
and structure from each page and provide interaction tech-
niques designed for typical web interactions. When pages
contain good semantics, these can be used to improve the
usability of the page, for instance by enabling users to skip
over sections irrelevant to them.

Semantic information can either be added to pages by con-
tent providers or formulated automatically when pages are
accessed. Adding meaningful headings tags (<H1 - 6>) has
been shown to improve web efficiency for blind web users
browsing structural information [24] but less than half of
web pages use them [5]. To improve web navigation, in-
page “skip” links visible only to screen reader users can be
added to complex pages by web developers. These links en-
able users to quickly jump to areas of the page possibly far
in linear distance. Unfortunately, these links are often bro-
ken [5]. Web developers have proven unreliable in manually
providing navigation aids by annotating their web pages.

Numerous middleware systems [1] have suggested ways for
inserting semantically relevant markup into web pages be-
fore they reach the client. Other systems have moved the
automatic detection of semantically-important regions to the
interface itself. For example, the Hearsay non-visual web
browser parses web pages into a semantic tree that can be
more easily navigated with a screen reader [20].

Augmenting the screen reader interface has also been ex-
plored. Several systems have added information about sur-
rounding pages to existing pages to make them easier to use.
Harper et al. augments links in web pages with “Gist” sum-
maries of the linked pages in order to provide users more in-
formation about the page to which a link would direct them
[10]. CSurf observes the context of clicked links in order to
begin reading at a relevant point in the resulting page [17].

Although adding appropriate semantic information makes
web content more usable, finding specific content on a page
is still a difficult problem for screen reader users. AxsJAX
addresses this problem by embedding “trails” into web pages
that guide users through semantically-related elements [2].
TrailBlazer scripts expand on this trail metaphor. Because
AxsJAX trails are generally restricted to a single page and
are written in Javascript, AxsJAX trails cannot be created
by end users or applied to the same range of tasks as Trail-
Blazer’s scripts.

Recording and playback of how-to knowledge
Interactive help systems and programming by demonstration
tools have explored how to capture procedural knowledge

and express it to users. COACH [22] and Eager [8] are early
systems in this space that work with standard desktop ap-
plications instead of the web. COACH observes computer
users in order to provide targeted help, and Eager learned
and executed repetitive tasks by observing users.

Expressing procedural knowledge, especially to assist a user
who is currently working to complete a task, is a key issue
for interactive help systems. Kelleher et al.’s work on stencil-
based tutorials demonstrates a variety of useful mechanisms
[12], such as by blurring all of the items on the screen except
for those which are relevant to the current task. Sticky notes
adding useful contextual information was also found to be
effective. TrailBlazer makes use of analogous ideas to direct
the attention of users to important content in its non-visual
user interface.

Representing procedural knowledge is also a difficult chal-
lenge. Keyword commands is one method, which uses sim-
ple psuedo-natural language description to refer to interface
elements and the operations to be applied to them [16]. This
is similar to the sloppy language used by CoScripter to de-
scribe web-based activity [15]. TrailBlazer builds upon these
approaches because the stored procedural knowledge repre-
sented by TrailBlazer can be easily spoken aloud and under-
stood by blind users.

A limitation of most current systems is that they cannot gen-
eralize captured procedural knowledge to other contexts. For
example, recording the process of purchasing a plane flight
on orbitz.com will not help perform the same task on trav-
elocity.com. One of the only systems to explore general-
ization is the Goal-Oriented Web Browser [9], which at-
tempts to generalize a previously demonstrated script using
a database of common sense knowledge. This approach cen-
tered around data detectors that could determine the type of
data appearing on web sites. TrailBlazer incorporates ad-
ditional inputs into its generalization process, including a
brief task description from the user, and does not require a
common-sense knowledgebase.

An alternate approach to navigating full-size web pages with
a script, as TrailBlazer does, is to instead shrink the web
pages by keeping only the information needed to perform the
current task. This can be done using a system such as High-
light, which enables users to reauthor web pages for display
on small screen devices by demonstrating which parts of the
pages used in the task are important [18]. The resulting sim-
plified interfaces created by Highlight are more efficient to
navigate with a screen reader, but prevent the user from de-
viating from the task by removing content that is not directly
related to the task.

AN ACCESSIBLE GUIDE
TrailBlazer was designed from the start for non-visual access
using the following three guidelines (Figure 2):

• Keyboard Access. All play back functions are accessible
using only the keyboard, making access for those who do
not use a mouse feasible.

Step 2 of 15: select “Books” from the “Search” listbox

“Search” Listbox

“Previous Step” Button

“Play from Here” Button

“Next Step” Button

Starts
Here

A

B

...

...

Figure 2. The TrailBlazer interface is integrated directly into the page,
is keyboard accessible, and directs screen readers to read each new
step. A) The description of the current step is displayed visually in
an offset bubble but is placed in DOM order so that the target of a step
immediately follows its description when viewed linearly with a screen
reader. B) Script controls are placed in the page for easy discoverability
but also have alternative keyboard shortcuts for efficient access.

• Minimize Context Switches. The playback interface is
integrated directly into the web pages through which the
user is being guided. This close coupling of the interface
into the web page enables users to easily switch between
TrailBlazer’s suggestions and the web page components
needed to complete each step.

• Directing Focus. TrailBlazer directs users to the loca-
tion on each page to complete each step. As mentioned, a
main limitation of using a screen reader is the difficulty in
finding specific content quickly. TrailBlazer directs users
to the content necessary to complete the instruction that it
suggests. If the user wants to complete a different action,
the rest of the page is immediately available.

The bubbles used to visually highlight the relevant portion of
the page and provide contextual information were inspired
by the “sticky notes” used in Stencil-Based Tutorials [12].
The non-visual equivalent in TrailBlazer was achieved by
causing the screen reader to begin reading at the step (Fig-
ure 2). Although the location of each bubble is visually off-
set from the target element, the DOM order of the bubble’s
components was chosen such that they are read in an intu-
itive order for screen reader users. The visual representation
resembles that of some tutoring systems, and may also be
preferred by users of visual browsers, in addition to support-
ing non-visual access with TrailBlazer.

Upon advancing to a new instruction, the screen reader’s fo-
cus is set to the instruction description (e.g., “Step 2 of 5:
click the “search” button”). The element containing that text
is inserted immediately before the relevant control (e.g., the
search button) in DOM order so that exploring forward from
this position will take the user directly to the element men-
tioned in the instruction. The playback controls for previous

TrailBlazer Example

..
.

1 of 15: go to www.amazon.com

2 of 15: select “Books” from the

“Search” listbox

..
.

8 of 15: clip the TABLE

containing “List Price”

1)

2)

8)

Figure 3. TrailBlazer guiding a user step-by-step through purchasing
a book on Amazon. 1) The first step is to goto the Amazon.com home-
page. 2) TrailBlazer directs the user to select the “Books” option from
the highlighted listbox. 8) On the product detail page, TrailBlazer di-
rects users past the standard template material directly to the product
information.

step, play, and next step are represented as buttons and are
inserted following the relevant control. Each of these func-
tions can also be activated by a separate keyboard shortcut -
for example, “ALT+S” advances to the next step.

The TrailBlazer interface enables screen reader users to move
from step to step, verifying that each step is going to be con-
ducted correctly, while avoiding all linear searches through
content (Figure 3). In the event that the user does not want
to follow a particular step of the script they are using, the
entire web page is available to them as normal. TrailBlazer
is a guide but does not override the user’s intentions.

CLIPPING
While examining the scripts in the CoScripter repository,
we noticed that many scripts contained comments direct-
ing users to specific content on the page. Comments are
not interpreted by CoScripter however, and there is no com-
mand in CoScripter’s language that can identify a particular
region of the screen. Whether users were looking up the sta-
tus of their flight, checking the prices of local apartments or
searching Google, the end goal was not to press buttons, en-
ter information into text boxes, or follow links; the goal was
to find information. A visual scan might locate this informa-
tion quickly, but doing so with a screen reader would be a
slower process.

Coyne et al. observed that blind web users often use the
“Find” function of their web browsers to address this issue
[7]. The find function provides a simple way for users to

2

1

2-a. “This region lists search results for your query.”
2-b. “This area contains the heading ‘Search Results’ along with
 the returns from a search of a term.”

1-a. “2008 season stats”
1-b. “The highlighted region is of statistics. This is a table that
 has multiple numbers describing a player's achievements
 and records of what he has accomplished.”

Figure 4. The descriptions provided by two participants for the screen-
shots shown illustrating diversity in how regions were described. Se-
lected regions are 1) the table of statistics for a particular baseball
player, and 2) the search results for a medical query.

quickly skip to the content, but requires them to know in
advance appropriate text for which to search. The “clip”
command that TrailBlazer adds to the CoScripter language
enables regions to be described and TrailBlazer users to be
quickly directed to them.

Region Description Study
Existing CoScripter commands are written in natural lan-
guage. In order to determine what language would be appro-
priate for our CoScripter command, we conducted a study in
which we asked 5 participants to describe 20 regions cover-
ing a variety of content (Figure 4). To encourage participants
to provide descriptions that would generalize to multiple re-
gions, two different versions of each region were presented.

Upon an initial review of the results of this study, we con-
cluded that the descriptions provided fell into the following
5 non-exclusive categories: high-level semantic descriptions
of the content (78%), descriptions matching all or part of
the headings provided on the page for the region (53%), de-
scriptions drawn directly from the words used in the region
(37%), descriptions including the color, size, or other stylis-
tic qualities of the region (18%), and descriptions of the lo-
cation of the region on the page (11%).

The Syntax of the Clip Command
We based the formulation of the syntax of the clip command
on the results of the study just described. Clearly, users
found it most convenient to describe the semantic class of
the region. While future work may seek to leverage a data
detector like Miro to automatically determine the class of
data in order to facilitate such a command [9], our clip com-
mand currently refers to regions by either their heading or
the content contained within them.

When using a heading to refer to a region, a user lists text
that starts the region of interest. For instance, the step “clip
the ‘search results”’ would begin the clipped region at the
text “search results.” This formulation closely matched what
many users wrote in our study, but does not explicitly specify
an end to the clip. TrailBlazer uses several heuristics to end
the clip. The most important part is directing the user to the
general area before the information that is valuable to them.
If the end of the clipped region comes too soon, they can
simply keep reading past the end of the region.

To use text contained within a region to refer to it, users
write commands like, “clip the region containing “flight sta-
tus””. For scripts operating on templated web site or for
those that use dynamically-generated content, this is not al-
ways an ideal formulation because specific text may not al-
ways be present in a desired region. By using both com-
mands, users have the flexibility to describe most regions,
and, importantly, TrailBlazer is able to easily interpret them.

FORMATIVE EVALUATION
The improvements offered in the previous sections were de-
signed to make TrailBlazer accessible to blind web users
using a screen reader. In order to investigate its perceived
usefulness and remaining usability concerns, we conducted
a formative user study with 5 blind participants. Our par-
ticipants were experienced screen reader users. On average,
they had 15.0 (SD=4.7) years of computer experience, in-
cluding 11.8 (2.8) years using the web.

We first demonstrated how to use TrailBlazer as a guide
through pre-defined tasks. We showed users how they could,
at each step, choose to either have TrailBlazer complete the
step automatically, complete it themselves, or choose any
other action on the page. After this short introduction, partic-
ipants performed the following three tasks using TrailBlazer:
(i) checking the status of a flight on united.com, (ii) finding
real estate listings fitting specific criteria, and (iii) querying
the local library to see if a particular book is available.

After completing these tasks, each participant was asked the
extent to which they agreed with several statements on a
Likert scale (Figure 5). In general, participants were very
enthusiastic about TrailBlazer, leading one to say “this is ex-
actly what most blind users would like.” One participant
said TrailBlazer was a “very good concept, especially for the
work setting where the scenarios and templates are already
there.” Another participant who helps train people on screen
reader use thought that the interface would be a good way
to gradually introduce the concept of using a screen reader
to a new computer user for whom the complexity of web
sites and the numerous shortcuts available to them can be
overwhelming. Participants uniformly agreed that despite
their experience using screen readers, “finding a little kernel
of information can be really time-consuming on a complex
web page” and that “sometimes there is too much content to
just use headings and links to navigate.”

Participants wondered if TrailBlazer could help them with
dynamic web content, which often is added to the DOM of

Participants

Completing tasks that are new to me is easy on most

web sites:1.

3.

4.

5.

6.

7.

TrailBlazer makes completing tasks easier

TrailBlazer makes completing tasks faster.

TrailBlazer made it easier to find content on web pages.

I want to use TrailBlazer in the future.

I would be more likely to use TrailBlazer if more scripts

were available.

Disagree 1

Agree 5

Disagree 1

Agree 5

Disagree 1

Agree 5

Disagree 1

Agree 5

Disagree 1

Agree 5

Disagree 1

Agree 5

Disagree 1

Agree 5

2. Finding relevant content on web pages can be challenging.

0 1 432 5

Figure 5. Participant responses to Likert scale questions indicating that
they think completing new tasks and finding content is difficult (1, 2),
think TrailBlazer can help them complete tasks more quickly and eas-
ier (3,4,5), and want to use it in the future (6), especially if scripts are
available for more tasks (7).

web pages far from where it appears visually, making it diffi-
cult to find. Screen readers can also have trouble presenting
dynamically-created content to users. TrailBlazer could not
only direct users to content automatically, avoiding a long
linear search, but also help them interact with it.

Despite their enthusiasm for using TrailBlazer for tasks that
were already defined, they questioned how useful it would
be if they had to rely on others to provide the scripts for
them to use. One participant even questioned the usefulness
of scripts created for a task that he wanted to complete be-
cause “designers and users do not always agree on what is
important.” TrailBlazer did not support recording new tasks
at the time of the evaluation, although new CoScripts could
be created by sighted users using CoScripter.

Participants also had several suggestions on how to improve
the interface. TrailBlazer guides users from one step to the
next by dynamically modifying the page, but screen read-
ers do not always update their external models of the pages
that they read from. To fix this users would need to occa-
sionally refresh the model of the screen reader, which many
thought could be confusing to novice users. Other systems
that improve non-visual access have similar limitations [2],
and these problems are being addressed in upcoming ver-
sions of screen readers.

DYNAMIC SCRIPT GENERATION
TrailBlazer can suggest actions that users may want to take
even when no pre-existing script is available for their current
task. These suggestions are based on a short task description
provided by the user and an existing repository of how-to
knowledge. Suggestions are presented to users as options,
which they can quickly jump to when correct but also easily
ignore. Collectively, these suggestions help users dynami-
cally create a new script - potentially increasing efficiency
even when they first complete a task.

Example Use Case
To inform its suggestions, TrailBlazer first asks users for a
short textual description of the task that they want to com-
plete; it then provides appropriate suggestions to help them
complete that task. As an example, consider Jane, a blind
web user who wants to look up the status of her friend’s flight
on Air Canada. She first provides TrailBlazer with the fol-
lowing description of her task: “flight status on Air Canada.”
The CoScripter repository does not contain a script for find-
ing the status of a flight on Air Canada, but it does contain
scripts for finding the status of flights on Delta and United.

After some pre-processing of the request, TrailBlazer con-
ducts a web search using the task description to find likely
web sites on which to complete it. “goto aircanada.com” is
its first suggested step, and Jane chooses to follow that sug-
gestion. If an appropriate suggestion was not listed, then
Jane could have chosen to visit a different web site or even
searched the web for the appropriate web site herself (per-
haps using TrailBlazer to guide her search). TrailBlazer au-
tomatically loads aircanada.com and then presents Jane with
the following three suggestions: “click the ’flight status’ but-
ton”, “click the ’flight’ button, and “fill out the ’search the
site’ textbox.” Jane chooses the first, and TrailBlazer com-
pletes it automatically. Jane uses this interface to complete
the entire task without needing to search within the page for
any of the necessary page elements.

A pre-existing script for the described task is not required for
TrailBlazer to accurately suggest appropriate actions. Trail-
Blazer can in effect apply scripts describing tasks (or sub-
tasks) on one web site on other web sites. It can, for exam-
ple, use a script for buying a book at Amazon to buy a book
at Barnes and Noble, a script for booking a trip on Amtrak
to help book a trip on the United Kingdom’s National Rail
Line, or a script for checking the status of a package being
delivered by UPS to help check on one being delivered by
Federal Express. Subtasks contained within scripts can also
be applied by TrailBlazer in different domains. For example,
the sequence of steps in a script on a shopping site that helps
users enter their contact information can be applied during
the registration process on an employment site. If a script
already exists for a user’s entire task, then the suggestions
they receive can follow that script without the user having to
conduct a search for that specific script in advance.

Suggestion Types
The CoScripter language provides a set number of action
types (Figure 6). Most CoScripts begin with a “goto” com-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

P
ro

p
o

rt
io

n

Step Number

Action Types at Each Step
click button

click link

enter

goto

select

turnon

Figure 6. Proportion of action types at each step number for scripts in
the CoScripter repository.

mand that directs users to a specific web page. Next, users
are led through interaction with a number of links and form
controls. Although not included in the scripts in the Co-
Scripter repository, the final action implicitly defined in most
CoScripts is to read the information that resulted from com-
pletion of the previous steps, which corresponds to the “clip”
command added by TrailBlazer.

The creation of suggestions in TrailBlazer is divided into the
following three corresponding components:

• Goto Component - TrailBlazer converts a user’s task de-
scription to keywords, and then searches the web using
those keywords to find appropriate starting sites.

• General Suggestion Component - TrailBlazer combines
a user’s task description, scripts in an existing repository,
and the history of the user’s actions to suggest the next
action that the user should take.

• Automatic Clipping Component - TrailBlazer uses the
textual history of user actions represented as CoScripter
commands to find the area on the page that is most likely
relevant to the user at this point using an algorithm in-
spired by CSurf [17]. Finding the relevant region to read
is equivalent to an automatic clip of content.

The following sections describe the components used by Trail-
Blazer to choose suggestions.

Goto Component
As shown in Figure 6, most scripts begin with a goto com-
mand. Accordingly, TrailBlazer offers goto commands as
suggestions when calculating the first step for the user to
take. The goto component uses the task description input
by the user to suggest web sites on which the task could be
completed.

Forming goto suggestions consists of the following three
steps: (i) determining which words in the task description
are most likely to describe the web site on which the task
it to be completed, (ii) searching the web using these most
promising keywords, and (iii) presenting the top results to
users. A part-of-speech tagger first isolates the URLs, proper
nouns, and words that follow prepositions (e.g., “United”

1. Task Description Similarity

4. Likelihood Action Pair

2. Task Script Similarity

3. Prior Action Script Similarity

5. Same Form as Prior Action

6. Button First Form Action

R
e

p
o

s
it

o
ry

U
s

e
r

H
is

to
ry

T
a

s
k

Figure 7. The features calculated and used by TrailBlazer in order to
rank potential action suggestions, along with the three sources from
which they are formed.

from the phrase “on United”) in the task description. Trail-
Blazer proceeds in a series of rounds, querying with key-
words in the order described until it gathers at least 5 unique
URLs. These URLs are then offered as suggestions.

The performance of the goto component is highly dependent
on the task description provided by the user and on the pop-
ularity of the site on which it should be completed. The au-
thors have observed this component to work well on many
real-world tasks, but future work will test and improve its
performance.

General Suggestion Component
The main suggestion component described in this paper is
the general suggestion component, which suggests specific
actions for users to complete on the current page. These
suggestions are presented as natural language steps in the
CoScripter language and are chosen from all the actions pos-
sible to complete on the current page. TrailBlazer ranks
suggestions based on the user’s task description, knowledge
mined from the CoScripter script repository, and the history
of actions that the user has already completed.

Suggestions are first assigned a probability by a Naive Bayes
classifier and then ranked according to them. Naive Bayes
is a simple but powerful supervised learning method that af-
ter training on labeled examples can assign probability es-
timates to new examples. Although the probabilities as-
signed are only estimates, they are known to be useful for
ranking [14]. The model is trained on recordings of tasks
that were previously demonstrated using either TrailBlazer
or CoScripter, which are contained within the CoScripter
script repository.

The knowledge represented by the features used in the model
could also have also been expressed as static rules for the
system to follow. TrailBlazer’s built-in machine learning
model enables it to continually improve as it is used. Be-
cause tasks that users complete using TrailBlazer implicitly
describe new scripts, the features based on the script repos-
itory should become more informative over time as more
scripts are added.

Features Used in Making Suggestions
In order to accurately rank potential actions, TrailBlazer re-
lies on a number of informative, automatically-derived fea-
tures (Figure 7). The remainder of this section explains the
motivation behind the features found to be informative and
describes how they are computed.

Leveraging Action History
TrailBlazer includes several features that leverage its record
of actions that it has observed the user perform. Two fea-
tures capture how the user’s prior actions relate to their in-
teraction with forms (Figure 7-5,6). Intuitively, when using
a form containing more than one element, interacting with
one increases the chance that you will interact with another
in the same form. The Same Form as Prior Action feature ex-
presses whether the action under consideration refers to an
element in a form for which an action has previously been
completed. Next, although it can occur in other situations,
pressing a button in a form usually occurs after acting on an-
other element in a form. The Button First Form Action fea-
ture captures whether the potential action is a button press in
a form in which no other elements have been acted upon.

Similarity to Task Description
The Task Description Similarity feature enables TrailBlazer
to 1weight steps similar to the task description provided by
the user more highly (Figure 7-1). Similarity is quantified by
calculating the vector-cosine between the words in the task
description and the words in each potential suggestion. The
word-vector cosine metric considers each set of words as a
vector in which each dimension corresponds to a different
term, and in which the length is set to the frequency by which
each word has been observed. For this calculation, a list
of stopwords are removed. The similarity between the task
description word vector vd and the potential suggestion word
vector vs is calculated as follows.

V C(vd, vs) =
vd · vs

||vd|| ∗ ||vs||
(1)

The word-vector cosine is often used in information retrieval
settings to compare documents with keyword queries [3].

Using the Existing Script Repository
TrailBlazer uses the record of user actions combined with
the scripts contained with the script repository to directly in-
fluence which suggestions are chosen. The CoScripter repos-
itory contains nearly 1000 human-created scripts describing
the steps to complete a diversity of tasks on the web. These
scripts contain not only the specific steps required to com-
plete a given web-based task, but also more general knowl-
edge about web tasks. Features used for ranking suggestions
built from the repository are based on (i) statistics of the ac-
tions and the sequence in which they appear, and (ii) match-
ing suggestions to relevant scripts already in the repository.
These features represent the knowledge contained within ex-
isting scripts, and enables TrailBlazer to apply that knowl-
edge to new tasks for which no script exists.

Figure 8. Suggestions are presented to users within the page context,
inserted into the DOM of the web page following the last element with
which they interacted. In this case, the user has just entered “105” into
the “Flight Number” textbox and TrailBlazer recommends clicking on
the “Check” button as its first suggestion.

Some action types are more likely than others according to
how many actions the user has completed (Figure 6). For
instance, clicking a link is more likely near the beginning of
a task than near the end. In addition, some actions are more
likely to follow actions of particular types. For instance,
clicking a button is more likely to follow entering text than
it is clicking a link because buttons are usually pressed af-
ter entering information into a form. Following this motiva-
tion, the Likelihood Action Pair feature used by TrailBlazer
is the likelihood of each action given the actions that the user
completed before (Figure 7-4). This likelihood is computed
through consideration of all scripts in the repository.

Leveraging Existing Scripts for Related Tasks
TrailBlazer also uses related scripts already in the repository
to help form its suggestions. Two sets of related scripts are
retrieved and a separate feature is computed for each. First,
TrailBlazer uses the task description provided by the user
as a query to the repository, retrieving scripts related to the
user’s task. For instance, if the user’s task description was
“Flight status on Air Canada,” matches on the words “flight”
and “status” will enable the system to retrieve scripts for
finding the flight status on “United” and “Delta.” The proce-
dure for checking flight status on both of these sites is differ-
ent than it is on Air Canada but certain steps, like entering
information into a textbox with a label containing the words
“Flight Number” are repeated on all three. The Task Script
Similarity feature captures this information (Figure 7-2).

The second set of scripts that TrailBlazer retrieves are found
using the last action that the user completed. These scripts

may contain subtasks that do not relate to the user’s stated
goal but can still be predictive of the next action to be com-
pleted. For instance, if the user just entered their username
into a textbox with the label “username,” many scripts will
be retrieved suggesting that a good next action would be to
enter their “password” into a password box. The Prior Ac-
tion Script Similarity feature enables TrailBlazer to respond
to relevant sub-tasks (Figure 7-3).

The motivation for the Task Script Similarity and Prior Ac-
tion Script features is that if TrailBlazer can find steps in
existing scripts similar to either the task description or an ac-
tion previously completed by the user, then subsequent steps
in that script should be predictive of future actions. The
scores assigned to each step are, therefore, fed forward to
other script steps so that they are weighted more highly. All
tasks implicitly start with a goto step specifying the page on
which the user first requests suggestions, so a prior action al-
ways exists. The process used is similar to spreading activa-
tion, which is a method used to connect semantically-related
elements represented in a tree structure [6]. The added value
from a prior step decreases exponentially for each subse-
quent step, meaning that steps following close after highly-
weighted steps primarily benefit.

To compute these features, TrailBlazer first finds a set of re-
lated scripts S by sending either the task description or the
user’s prior action as a query to the CoScripter repository.
TrailBlazer then derives a weight for each of the steps con-
tained in each related script. Each script s contains a sequen-
tial list of natural language steps (Figure 1). The weight of
each script’s first step is set to V C(s0, query), the vector-
cosine between the first step and the query as described ear-
lier. TrailBlazer computes the weight of each subsequent
step, as follows:

W (si) = w ∗W (si−1) + V C(si, query) (2)

TrailBlazer currently uses w = 0.3, which has worked well
in practice. The fractional inclusion of the weight of prior
steps serves to feed their weight forward to later steps.

Next, TrailBlazer constructs a weighted sentence sentS of
all the words contained within S. The weight of each word is
set to the sum of the computed weights of each step in which
each word is contained, W (si). The final feature value is the
word-vector cosine between vectors formed from the words
in sentS and query. Importantly, although the features con-
structed in this way do not explicitly consider action types,
the labels assigned to page elements, or the types of page el-
ements, all are implicitly included because they are included
in the natural language CoScripter steps.

Presenting Suggestions to Users
Once the values of all of the features are computed and all
potential actions are ranked, the most highly-ranked actions
are presented to the user as suggestions. The suggestions are
integrated into the accessible guide interface outlined ear-
lier. TrailBlazer provides five suggestions, displayed in the
interface in rank order (Figure 8).

The suggestions are inserted into the DOM immediately fol-
lowing the target of the prior command, making them ap-
pear to non-visual users to come immediately after the step
that they just completed. This continues the convenient non-
visual interface design used in TrailBlazer for script play
back. Users are directed to the suggestions just as they would
be directed to the next action in a pre-existing script. Just
as with pre-defined actions, users can choose to review the
suggestions or choose to skip past them if they prefer, repre-
senting a hallmark of mixed-initiative design [11]. Because
the suggestions are contained within a single listbox, moving
past them requires only one keystroke.

Future user studies will seek to answer questions about how
to best present suggestions to users, how many suggestions
should be presented, and how the system’s confidence in its
suggestions might be conveyed by the user interface.

EVALUATION OF SUGGESTIONS
We evaluated TrailBlazer by testing its ability to accurately
suggest the correct next action while being used to complete
15 tasks. The chosen tasks represented the 15 most popular
scripts in the CoScripter repository according to the number
people who have run them. The scripts contained a total of
102 steps, with an average of 6.8 steps per script (SD=3.1).
None of the scripts included in the test set were included
when training the model.

Using existing scripts to test TrailBlazer provided two ad-
vantages. The first was that the scripts represented a natural
ground truth to which we could compare TrailBlazer’s sug-
gestions and the second was that each provided a short title
that we could use as the user’s description for purposes of
testing. The provided titles were relatively short, averaging
5.1 words per title. The authors believe that it is not un-
reasonable to assume that users could provide similar task
descriptions since users provided these titles.

On the 15 tasks in this study, TrailBlazer listed the correct
next action as its top suggestion in 41.4% of cases and within
the top 5 suggestions in 75.9% of cases (Figure 9). Pre-
dicting the next action correctly can dramatically reduce the
number of elements that users need to consider when com-
pleting tasks on the web. The average number of possible
actions per step was 41.8 (SD=37.9), meaning that choosing
the correct action by chance has a probability of only 2.3%.
TrailBlazer’s suggestions could help users avoid a long, lin-
ear search over these possibilities.

Discussion
TrailBlazer suggested the correct next action among its top
5 suggestions in 75.9% of cases. The current interface en-
ables users to review these 5 choices quickly, so that in these
cases users will not need to search the entire page in order to
complete the action - TrailBlazer will lead them right there.
Furthermore, in the 24.1% of cases in which TrailBlazer did
not make an accurate suggestion, users can continue com-
pleting their tasks as they would have without TrailBlazer.
Future studies will look at the effect on users of incorrect
suggestions and how we might mitigate these problems.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 2 3 4 5 6 7 8 9 10

Suggestions Provided

Suggestion Performance

Figure 9. The fraction of the time that the correct action appeared
among the top suggestions provided by TrailBlazer for varying num-
bers of suggestions. The correct suggestion was listed first in 41.4%
cases and within the top 5 in 75.9% of cases.

TrailBlazer had difficulties making correct suggestions when
the steps of the procedure seemed arbitrary. For instance,
the script for changing one’s Emergency Contact informa-
tion begins by clicking through links titled “Career and Life”
and “About me - personal” on pages on which nearly 150 dif-
ferent actions could be made. Because no similar scripts ex-
isted, no features indicated that it should be selected. Later,
the script included the step, “click the “Emergency contacts”
link,” which the system recommended as its first choice.
These problems illustrate importance of having scripts in the
first place, and are indicative of the improvements possible
as additional scripts and other knowledge are incorporated.

Fortunately, TrailBlazer is able to quickly recover upon mak-
ing an error. For instance, if it does not suggest an action
involving a particular form and the user completes an ac-
tion on the form anyway, TrailBlazer is likely to recover on
the next suggestion. This is particularly true with form el-
ements because of the features created specificially for this
case (features 5 and 6 in Figure 7), but TrailBlazer is often
able to recover in more general cases. TrailBlazer benefits
greatly from its design as a guide to a human who can occa-
sionally correct its suggestions, and its operators also benefit
because of the efficiency gains when it is correct.

FUTURE WORK
TrailBlazer can accurately predict the next step that users
are likely to want to perform based on an initial action and
prvides an accessible interface enabling blind users to lever-
age those suggestions. A next step will be user studies with
blind web users to study how blind web users use the sys-
tem and discover improvements on the provided interface to
suggestions.

Guiding web users through completing web tasks has many
applications beyond improving access for blind web users.
The TrailBlazer approach adapts easily to commonly-used
phone menu systems. Because of the reduction in complex-
ity achieved by guiding users, the TrailBlazer approach may
also be appropriate for certain users with learning or cogni-
tive disabilities. Additionally, users of small-screen devices

face many of the same problems finding relevant informa-
tion in complex web pages as screen reader users and may
benefit from a similar approach.

Interfaces for non-visual access could benefit from moving
toward task-level assistance of the kind exposed by Trail-
Blazer. Current interfaces too often focus on either low-level
annotations or deciding beforehand what users will want to
do, taking away their control.

CONCLUSION
We introduced TrailBlazer, an accessible interface to how-to
knowledge that helps blind users complete web-based tasks
faster and more effectively by guiding them through a task
step-by-step. By directing the user’s attention to the right
places on the page and by providing accessible shortcut keys,
TrailBlazer enables users to follow existing how-to instruc-
tions quickly and easily. A formative evaluation of the sys-
tem revealed that users were positive about the system, but
that the lack of how-to scripts could be a barrier to use. We
extended the TrailBlazer system to dynamically suggest pos-
sible next steps based on a short description of the desired
task, the user’s previous behavior, and a repository of exist-
ing scripts. The user’s next step was contained within the top
5 suggestions 75.9% of the time, showing that TrailBlazer is
successfully able to guide users through new tasks.

ACKNOWLEDGEMENTS
We thank T.V. Raman for inspiring the use of trails to im-
prove non-visual access; the participants in our formative
evaluation for useful and encouraging feedback; and Yevgen
Borodin, Anna Cavender, Allen Cypher, Clemens Drews,
James Lin, and Barton Smith for their feedback and support.

REFERENCES
1. Asakawa, C. and Takagi, H. Web Accessibility: A

Foundation for Research, Springer, 2008.

2. AxsJAX. Google, Inc. (2008).
Http://code.google.com/p/google-axsjax/.

3. Baeza-Yates, R., and Ribeiro-Neto, B. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co.,
Boston, Massachusetts, 1999.

4. Bigham, J. P. and Cavender, A. C. Evaluating Existing
Audio CAPTCHAs and an Interface Optimized for
Non-Visual Use. In Proc. of the SIGCHI Conf. on Human
Factors in Computing Systems (CHI ’09), Boston,
Massachusetts, 2009. To Appear.

5. Bigham, J. P., Cavender, A. C., Brudvik, J. T., Wobbrock,
J. O., and Ladner, R. E. Webinsitu: A comparative analysis
of blind and sighted browsing behavior. In Proc. of the 9th
Intl. ACM SIGACCESS Conf. on Computers and
Accessibility (ASSETS ’07), Tempe, Arizona, 2007, 51–58.

6. Collins, A. and Loftus, E. A spreading activation theory of
semantic processing. Psychological Review, 82 (1975),
407–428.

7. Coyne, K. P. and Nielsen, J. Beyond alt text: Making the
web easy to use for users with disabilities (2001).

8. Cypher, A. Eager: programming repetitive tasks by
example. In Proc. of the SIGCHI Conf. on Human Factors
in Computing Systems (CHI ’91). New Orleans, Louisiana,
United States, 1991, 33–39.

9. Faaborg, A. and Lieberman, H. A goal-oriented web
browser. In Proc. of the SIGCHI Conf. on Human Factors
in Computing Systems (CHI ’06). 2006, 751–760.

10. Harper, S. and Patel, N. Gist summaries for visually
impaired surfers. In Proc. of the 7th Intl. ACM SIGACCESS
Conf. on Computers and Accessibility (ASSETS ’05). New
York, NY, USA, 2005, 90–97.

11. Horvitz, E. Principles of mixed-initiative user interfaces. In
Proc. of the SIGCHI Conf. on Human factors in Computing
Systems (CHI ’99). New York, NY, USA, 1999, 159–166.

12. Kelleher, C. and Pausch, R. Stencils-based tutorials: design
and evaluation. In Proc. of the SIGCHI Conf. on Human
factors in Computing Systems (CHI ’05). Portland, Oregon,
USA, 2005, 541–550.

13. Leshed, G., Haber, E. M., Matthews, T., and Lau, T.
Coscripter: Automating & sharing how-to knowledge in
the enterprise. In Proc. of the 26th SIGCHI Conf. on
Human Factors in Computing Systems (CHI ’08). Florence,
Italy, 2008, 1719–1728.

14. Lewis, D. D. Naive bayes at forty: The independence
assumption in information retrieval. In Proc. of ECML-98,
10th European Conf. on Machine Learning. Springer
Verlag, Heidelberg, DE, Chemnitz, DE, 1998, 1398, 4–15.

15. Little, G., Lau, T., Cypher, A., Lin, J., Haber, E. M., and
Kandogan, E. Koala: capture, share, automate, personalize
business processes on the web. In Proc. of the SIGCHI
Conf. on Human factors in Computing Systems (CHI ’07).
2007, 943–946.

16. Little, G. and Miller, R. C. Translating keyword commands
into executable code. In Proc. of the 19th annual ACM
symposium on User Interface Software and Technology
(UIST ’06). New York, NY, USA, 2006, 135–144.

17. Mahmud, J., Borodin, Y., and Ramakrishnan, I. V. Csurf: A
context-driven non-visual web-browser. In Proc. of the Intl.
Conf. on the World Wide Web (WWW ’07). 31–40.

18. Nichols, J. and Lau, T. Mobilization by demonstration:
using traces to re-author existing web sites. In Proc. of the
13th Intl. Conf. on Intelligent User Interfaces (IUI ’08).
Gran Canaria, Spain, 2008, 149–158.

19. Nielsen, J. Hypertext and hypermedia. Academic Press
Professional, Inc., San Diego, CA, USA, 1990.

20. Ramakrishnan, I. V., Stent, A., and Yang, G. Hearsay:
Enabling audio browsing on hypertext content. In Proc. of
the 13th Intl. Conf. on the World Wide Web (WWW ’04).
2004.

21. Raman, T. V. Emacspeak—a speech interface. In Proc. of
the SIGCHI Conf. on Human Factors in Computing
Systems (CHI ’96). Vancouver, Canada, 1996, 66–71.

22. Selker, T. Cognitive adaptive computer help (coach). In
Proc. of the Intl. Conf. on Artificial Intelligence. IOS,
Amsterdam, 1989, 25–34.

23. Takagi, H., Saito, S., Fukuda, K. and Asakawa, C. Analysis
of navigability of web applications for improving blind
usability. In ACM Transactions on Computer-Human
Interaction, 14:3–13. ACM Press, 2007.

24. Watanabe, T. Experimental evaluation of usability and
accessibility of heading elements. In Proc. of the Intl.
Cross-Disciplinary Conf. on Web Accessibility (W4A ’07).
2007, 157 – 164.

