Inspiring Blind High School Students to Pursue Computer
Science with Instant Messaging Chatbots

Jeffrey P. Bigham, Maxwell B. Aller, Jeremy T. Brudvik, Jessica O. Leung,
Lindsay A. Yazzolino, Richard E. Ladner
Department of Computer Science and Engineering
University of Washington
o . . Seattle, WA 98195 USA)
{jbigham, maxaller, jtorudvi, joyleung, lindsaym, ladner;@cs.washington.edu

ABSTRACT

Blind students are an underrepresented group in computer
science. In this paper, we describe our experience prepar-
ing and leading the computer science track at the National
Federation of the Blind Youth Slam. As part of this work-
shop, fifteen blind high school students created and person-
alized instant messaging chatbots, a project designed to be
completely accessible to blind students. Chatbots enable
students to infuse their own personalities into a socially-
oriented program that incorporates ideas from artificial in-
telligence, natural language processing, and web services.
We first outline the chatbots project and curriculum, which
has wide appeal for all students, and then offer general de-
sign principles used to create it that can help ensure the
accessibility of future projects. Students created their chat-
bots using a real programming language and were guided by
both blind and sighted mentors. By programming from the
start in a supportive environment, our students will gain the
confidence to persevere in computer science in the future.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education];
K.4.2 [Social Issues]: Assistive Technologies for persons
with disabilities

General Terms

Design, Human Factors

Keywords
Accessibility, Blind students, Chatbots

1. INTRODUCTION

Blind students are underrepresented in computer science
[8]. Factors that discourage blind students from pursuing
computer science include a) exaggeration of the difficulties

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE’08, March 12-15, 2008, Portland, Oregon, USA.

Copyright 2008 ACM 978-1-59593-947-0/08/0003 ...$5.00.

Figure 1: One of the authors demonstrates screen
reader usage to a workshop participant. Both are
wearing headphones to hear the screen reader.

that they may face, b) a lack of mentors knowledgeable
about assistive technology and c¢) inaccessible course projects
and material [2]. Better understanding, encouragement and
development can help inspire blind students to pursue com-
puter science, and, to that end, we led a four-day, computer
science workshop for fifteen blind high school students as
part of the National Federation of the Blind Youth Slam.
The Youth Slam attracted two hundred blind and low vi-
sion high school students and enabled them to explore dis-
ciplines falsely believed to be too difficult or impossible for
blind people to pursue.

We wanted this workshop to be not only exciting but also
illustrative of the problem solving and creativity that is core
to computer science. Introductory workshops in computer
science often target producing visual artifacts because such
projects are immediately appealing to sighted students [10].
Other workshops interest students with computer-controlled
models, such as LEGO Mindstorm robots [5]. Both types
of projects allow students to exercise their creative problem
solving skills, but currently require using software that does
not work well with screen reading or magnifying software.
While such projects could be made accessible to blind stu-
dents, their largely visual appeal may be lessened.

The project we chose centered on instant messenger chat-
bots, which leverage social and technological appeal to in-
terest students. Chatbots are software robots with which
students and their friends can interact. Students can pro-

gram their chatbots to carry on simple conversations that
reflect their personality or interests. Instant messenger is
an increasingly popular medium for communication among
high school students, which awards it social appeal. These
factors make an instant messenger chatbot an ideal project
to inspire high school students to pursue computer science.

The following criteria were used to select the chatbots
project and represent important aspects of a project for an
introductory workshop for blind students:

1. The project must illustrate an exciting application of
computer science that allows students to infuse their
personality, imagination and intelligence.

2. The project must utilize the problem-solving skills that
form the core set of computer science and engineering
without undue time spent learning programming lan-
guage syntax, complex tools or jargon.

3. Project components must be designed to be easily ac-
cessible to our student population. In our case this
meant that all components were easily accessed using
a screen reader.

As part of the project, students created personal chatbots
endowed with unique personas. Examples of chatbots that
we suggested to students included the following: a psycholo-
gist, a fortune teller and Yoda from Star Wars. No students
chose to implement these examples. Instead, they created
chatbots with personas that reflected their own personal-
ities and interests, such as an anti-Bush conservative, an
insult-giving smart alec and a poetic mathematician. Chat-
bots can also exhibit technological sophistication. They can
draw information from the web to answer useful questions
like “What’s the weather in Baltimore?”, “Who won the
Orioles game last night?”, or “Where’s the nearest Chinese
restaurant?” The creativity exhibited in the chatbots cre-
ated by our students exemplified the wide range of possibil-
ities made available by the chatbots project.

Many computer science projects involve working with a
text terminal. Chatbots make such text input/output seem
intelligent and exciting, perhaps because students are accus-
tomed to talking to human friends using instant messenger.
From the programming perspective, it is no different than
creating a console program. Students were initially cap-
tivated even by their “Hello World” chatbot because they
could type to it via instant messenger and it would respond.
The excitement seemed to stem from the fact that most
students had previously used instant messenger programs
to talk to other people. Their chatbots immediately seemed
more interesting than interacting with a terminal because it
was easier to think of them as being intelligent. Students
quickly realized that their chatbots were not smart and most
were excited to learn how to make them appear smarter. As
they did so, they learned the important lesson that com-
puter programs that appear intelligent base their behavior
on clever but deterministic programming. The instant mes-
saging window served the function of a simple terminal win-
dow, but students found it exciting.

The remainder of this paper is organized as follows: Sec-
tion 2 overviews the workshop and Section 3 outlines the
principles followed to ensure an accessible curriculum. Sec-
tion 5 summarizes the chatbots created by our students and
Section 6 reports on lessons learned from the workshop.

2. WORKSHOP OVERVIEW
2.1 Assistive Technology

Blind individuals use screen readers and magnification
software to access computers (Figure 1). Screen readers,
such as JAWS [1] and Window-Eyes [3], convert both visual
interfaces and information to speech. They provide key-
board shortcuts that enable efficient use of programs with
the serial voice interface provided by screen readers. For in-
stance, screen readers provide a shortcut to skip from head-
ing to heading in web pages. This shortcut does not al-
ready exist because sighted users easily skip between visual
headings. Screen readers need to be customized for each
new program and not all programs are supported. Many
blind individuals prefer to use magnification software, such
as ZoomText[4], to enlarge the contents of their screens.
These programs scale elements to high magnification while
preserving important components and relationships.

A vital aspect of using a computer when blind is learn-
ing to use a screen reader. All of our students that used
a screen reader had used one prior to our course, although
each student’s proficiency varied. Several mentors in the
Youth Slam program were experienced screen reader users
and, while this level of experience was incredibly valuable,
it was not necessary to assist students. Each computer was
equipped with a screen reader and a screen magnifier. An
audio splitter that enabled instructors to hear what students
were hearing was invaluable in assisting students.

While our focus was on designing a program for blind
high school students without prior experience programming,
many of the lessons learned are informative for ensuring us-
ability in computer science education whenever populations
with different access requirements are involved.

2.2 Programming from the Start

Our workshop was heavily influenced by the success of
the Game of Life Workshop [10] which is a week-long, com-
puter science workshop for disabled students. The workshop
stresses problem-solving skills that form the core of com-
puter science. Students new to programming wrote Java
programs that visually simulated the complex interactions
of cellular automata. Each student was paired with a com-
puter scientist who could help them implement their ideas
and debug their programming. The goal of this program
was to guide students through the process of computer pro-
gramming in a time frame that made it impossible to teach
them everything one would teach a typical CS1 student.

Our workshop followed a similar model of “programming
from the start.” Even though the workshop lasted only
four days, we introduced students to real programming in a
supportive environment. This approach serves two valuable
purposes. First, much of the initial frustration experienced
by students is caused by learning confusing programming
syntax. Introducing programming in a supportive environ-
ment may help students avoid this. Second, students who
choose to pursue computer science will face real program-
ming assignments from the start. By enabling them to suc-
cessfully complete a realistic programming assignment, we
hope to instill confidence in their abilities.

One student summarized the workshop for other Youth
Slam participants as follows: “After the first day, we real-
ized that programming is hard, but after we got into it, it
was really fun!” This is a positive review of our approach.

class HelloWorldBot BasicBot {
public override string HandleMessage (
string message,
string user,
BotMemory bm)

return "Hello World!";

Figure 2: Source code for HelloWorld chatbot.

Students experienced first the struggle and then reward of
computer programming, which they will certainly face in
future computer science courses but may not have expe-
rienced with a simplified project. This workshop offered
readily available assistance for students to help them avoid
most of the frustration of learning to program. Instruc-
tors helped students turn their ideas into code and assisted
them in quickly debugging their programs, but students pro-
grammed independently.

2.3 Provided Framework

We provided an instant messaging chatbot framework that
allowed chatbot programs to be relatively short and under-
standable. Students were provided with a method that is
called by the framework each time a new chat message ar-
rives. Parameters hold the received message, the name of
the user who sent it and a data structure that can persis-
tently store data tied to each user. Figure 2 contains code
sufficient to produce a “Hello World” chatbot which will
respond to any message that it receives with “Hello World.”

The project is written in C#, whose syntax is virtually
indistinguishable from Java in the context of the chatbots
project. The C# compiler is readily available on most Win-
dows PCs and produces easy-to-understand error messages.
The framework uses third-party instant messaging libraries
written for the .NET platform and supports the AOL, Ya-
hoo, Windows Live and Jabber protocols. This flexibility
enables students to demonstrate their chatbots to friends
regardless of which protocol they are using, helping to ex-
tend the excitement of our program beyond the workshop.

3. ACCESSIBLE DESIGN

The software used in the chatbots project was both acces-
sible and easy to learn. To encourage students to continue
participation after the workshop and to enable other groups
to easily use our curriculum, the software chosen is freely
available. The best way to ensure accessible design is to ac-
tively engage consultants from your target population in the
process of developing, testing and publishing your curricu-
lum. We developed our curriculum with close consultation
of two blind computer users and with the support of the
National Federation of the Blind.

3.1 Instant Messaging Client

Our blind consultants chose the Windows Live Messenger
(formerly MSN Messenger) as being the most accessible in-
stant messaging client. While Windows Live Messenger is
not the most popular instant messenger client among the
general population, it is quite popular with blind individu-
als because of its accessibility. The AOL Instant Messenger

client came in a close second in terms of accessibility, but
the AIM servers prevent users from logging off and on too
quickly. This would be a burden during the usual software
development cycle of write, compile and test. Such balances
of accessibility and technical concerns is common.

3.2 Programming Environment

Students used the shareware text editor TextPad® for pro-
gramming. This lightweight application is well-suited for
beginning programmers because of its straightforward inter-
face and extensive ability to be customized. This program
is used in our CS1 course and was recommended by our
blind consultants. Preliminary testing indicated that the
latest version (5+) of the program did not work well with
the JAWS screen reader because non-intuitive shortcut keys
were used to switch between the editing and command-result
panes of the program. Instead, we used version 4.7.3, which
did not exhibit the problem.

We printed examples of chatbot code in braille for stu-
dents, but few students used these when coding, preferring
instead to refer to code examples on the web page. Most stu-
dents had not previously read computer braille. The code
samples were written in computer braille, which includes
braille characters for additional symbols often used in com-
puting. Listening to the code samples sounded like the code
that they would later be editing and did not require them to
read computer braille. These braille code samples enabled
students to appreciate the structure of code, which is not
apparent when listening to it with a screen reader.

3.3 Tutorial

With only four instructors and fifteen students, each stu-
dent did not have a dedicated instructor. To enable inde-
pendent learning when an instructor was not available, we
created an online tutorial that provides a series of exercises
focusing on concepts useful for creating chatbots. After a
brief, high-level discussion of what programming is, the tu-
torial introduces strings because messages are received and
sent as strings. Conditionals come next because they enable
chatbots to appear intelligent as the mechanism by which
chatbots make decisions. Basic regular expression match-
ing is introduced early because chatbots seem more realistic
when they can flexibly match incoming messages. Concepts
related to state provide chatbots with memory that enables
more intelligent chatbot dialog (Figure 3). Finally, we cov-
ered methods provided by the framework that allow informa-
tion to be retrieved from web services. The tutorial covered
a small subset of C# necessary to code chatbots in order to
keep students from being overwhelmed by the syntax.

Most students were accustomed to browsing the web with
a screen reader and the tutorial was made available on the
web for this reason. The tutorial web pages utilize head-
ing and list HTML tags extensively to enable students to
efficiently skip between exercises. In-page links are used to
enable students to quickly navigate within each page. A
common method of navigating a web page with a screen
reader is to move from link to link and all links are assigned
descriptive anchor text to support this. Others have offered
tips for creating accessible web pages [9, 7].

Our student-to-instructor ratio was low (approximately 4
to 1) and enabled us to provide timely attention to students
as they completed the tutorial. Absent specific requests for
1

www.textpad.com

class HowAreYouBot BasicBot {
public override string HandleMessage (
string message,
string user,
BotMemory bm)

{
if (bm["asked"] == "yes") {
bm["asked"] = "no";
return "That’s great!";
} else {
bm["asked"] = "yes";
return "How are you today?";
}
}

}

Figure 3: Storing and using state in a chatbot.
When a message is first received, the chatbot replies
with a question. When it receives another message,
it replies acknowledging an answer. It then resets.

assistance, instructors moved from student to student, work-
ing through the tutorial with them, answering questions and
explaining concepts.

3.4 Summary

The chatbots project was designed with a focus on acces-
sibility for blind students, but was designed with inclusive
universal design principles to make it appropriate for most
students [6]. We distilled the following design principles for
creating accessible computer science projects:

e Prepare resources that can be easily converted into an
accessible form. An electronic format is often best be-
cause it can be transformed into large-print, electronic
speech, braille and others.

e Consider both technical requirements and accessibility
when choosing software. Both can be achieved.

e Test early and extensively with members of your target
population. If no such consultants are available, test
using the tools that this population will use.

4. WORKSHOP EXPERIENCE

Students in our class were enthusiastic. The biggest chal-
lenge they faced was signing up for an instant messenger
name for their chatbot because doing so required solving a
CAPTCHA and none of the students could solve the dif-
ficult audio version. Sighted instructors ended up solving
the visual CAPTCHA instead. Initially, programming was
difficult for students, but by the end of the week many were
creating new chatbots independently. All students success-
fully created chatbots.

All fifteen students in the workshop were described as
blind, but blind individuals exhibit a great diversity of vi-
sual acuity and skill sets. Six students preferred to use their
limited vision in preference to a screen reader. Two students
preferred to use the ZoomText [4] screen magnification soft-
ware. Several of our students did not know braille.

Coding difficulties often resulted from the lack of struc-
ture conveyed by screen readers which read code serially.
Students would often type new code statements beyond the
brackets of the main method or even within the quotes of

2. ChatBot
<studentchatbot@passport.com>

Student says:
Hi.
ChatBot says:
What's up, Student
Student says:
Not much, what's the weather like today?
ChatBot says:
What city and state would you like the weather for?
Student says:
Seattle, WA.
ChatBot says:
The weather for Seattle, WA. is Today - Mostly sunny early.
Increasing clouds with a chance of rain in the afternoon. Highs in
the upper 60s to mid 70s. North wind to 10 mph
Student says:
What's the news in Seattle?
ChatBot says:
I've heard some news about that.
OKC mayor refutes Sonics report - Sl.com. Check it out here:
http://sportsillustrated.cnn.com/2007 /basketball/nba/08/29/bc
Student says:
| don't know that definition
ChatBot says:
What word would you like the definition for?
Student says:
refute
ChatBot says:
to prove to be false or erroneous, as an opinion or charge.

D - @ P

B g gl

Last message received at 8:10 AM on 8/31/2007.

I
>

Figure 4: An example conversation with a chatbot
produced by a workshop participant that illustrates
the ability of chatbots to interact with web services.

an existing string. These errors are different than we have
observed with new sighted programmers. A technique suc-
cessfully used to improve their sense of the code’s structure
was to frequently move the cursor within the code they were
editing. The screen reader speaks the character beneath the
cursor when it is moved and by moving around quickly stu-
dents could effectively hear a small, two-dimensional window
around their cursor. The most successful screen reader users
would also check for typos using this method. This is anal-
ogous to when a sighted person glances over what they have
typed. Screen readers can be set to read aloud each char-
acter as the user types it, but most found the feature to be
bothersome and to slow their typing.

Some students continued to work on their chatbots after
the workshop. The projects were easy for students to use on
their home computers because the required software is free
and the setup and tutorial documents are on our web page.

5. CHATBOTS CREATED

Students created an impressive variety of chatbots. Figure
4 shows an example dialog. Chatbots generally expressed el-
ements of three themes: technology, dialog and personality:

Technology Many chatbots focused on the technological
capabilities that they could provide to their chatbots. Chat-
bots could access web services to retrieve up-to-date news
and sports information and chatbots that could retrieve the
definitions and synonyms of words.

Dialog Some chatbots were fluent with dialog in a specific
area, such as math or small talk. One student built a chatbot

with the goal of replicating his own dialog. He signed his
chatbot onto instant messenger using his usual IM name and
a friend didn’t realize that it wasn’t him for eight messages.

Personality Some chatbots reflected the unique person-
alities of their creators. Many students spent as much time
perfecting the clever responses that their chatbots would
give as they spent programming. For example, one student
had her chatbot respond “Melissa loves clothes, shoes, and
hair accessories, but only if they’re cute” by default.

6. LESSONS LEARNED
6.1 A Diversity of Abilities

All of our students were blind, but each student’s visual
acuity and experience using the assistive technology varied
greatly. All of our students that required the use of a screen
reader had previously used one, which is unfortunately atyp-
ical in the general blind population. Unsurprisingly, those
students who were most proficient at using a screen reader
were initially most successful. Programming is challenging
using a screen reader, but most students quickly adapted
and increased their screen reader proficiency as they pro-
grammed. They will carry this broadly applicable skill with
them in the future. Despite differences in abilities, all stu-
dents were able to program their chatbots with the function-
ality that they wanted with variable amounts of coaching.

6.2 Instructor Experience

Our instructors were not experienced screen reader users
and we found that this was not a requirement to teach stu-
dents who use screen readers, although it could have helped.
Instructions based on direction (e.g., move the cursor to the
left or bring focus to the control above the current one)
were effective in assisting students navigating through the
TextPad editor. Describing the type of element that needs
to be used was enough to enable our students to find it. In-
structors found value in listening to the output of the screen
reader along with students. Learning to use a screen reader
can be difficult, but gaining a sense of what students are
doing is possible by both listening and watching the screen.

As previously mentioned, all of our students had prior ex-
perience using a screen reader. If they had not, then it would
have been valuable to spend time initially overviewing ba-
sic screen reader usage. Most commands are fairly intuitive
and existing Windows shortcuts still apply. For instance, the
arrow keys still move the cursor in the direction expected,
the TAB key moves from element to element in menus and
ALT-TAB switches between programs. Using these basic
commands will allow users to accomplish much of what is
possible. The screen reader help dialog and experienced
users helped students increase their shortcut repertoire.

Several blind mentors also assisted students in our track.
Although all were not knowledgeable of computer science,
most were experienced computer users and were invaluable
in helping students increase their expertise in using their
screen reader. We found that students often consulted one
another to find more efficient ways to accomplish the tasks
that they wanted. A few of the mentors were also familiar
with the “sound of code,” which is substantially different
than the visual representation displayed on the screen and
were able to help students become accustomed to it.

Instructor patience and approachability were paramount.
Completing tasks for our students was tempting because

screen readers can seem incredibly inefficient and difficult
to use. Students do not learn how to accomplish tasks when
they are performed using a mouse because they don’t hear
the process. Helping students to complete tasks using the
keyboard will allow them to do so independently next time.
Programming can be frustrating and we actively encouraged
students to ask for help. We also moved from student to
student asking if they had questions and asking them to
explain what they were doing.

7. WEB RESOURCES

The chatbot curriculum, framework and accessible pro-
gramming tools are available on our web page:

http://webinsight.cs.washington.edu/chatbots/

8. CONCLUSION

This paper has described our experience preparing and
leading the computer science track at the National Federa-
tion of the Blind Youth Slam. We have presented both the
curriculum used in the course and the principles followed to
ensure that it would be accessible to our students. Students
created impressive, personalized chatbots using a real pro-
gramming language. We hope that this process will inspire
these students to pursue computer science and contribute to
the confidence that will enable them to persevere.

9. ACKNOWLEDGEMENTS

Our workshop has been supported by National Science
Foundation grant IIS-0415273 and a Boeing Professorship.
We thank the National Federation of the Blind for organiz-
ing the Youth Slam of which our workshop was a part.

10. REFERENCES

[1] Jaws 8.0 for windows. Freedom Scientific, 2006.
http://www.freedomscientific.com.

[2] National center for blind youth in science concept
paper. National Federation of the Blind, 2006.
http://www.blindscience.org/ncbys/.

[3] Window-eyes. GW Micro, 2006.
http://www.gwmicro.com/Window-Eyes/.

[4] Zoomtext. Ai Squared, 2007.
http://www.aisquared.com.

[5] D. J. Barnes. Teaching introductory java through lego
mindstorms models. In Proc. of the Technical
Symposium on Computer Science Education (SIGCSE
’02), pages 147-151, New York, NY, USA, 2002.

[6] S. Burgstahler. Universal Design of Instruction.
University of Washington, DO-IT, 2005.

[7] J. Clark. Building Accessible Websites. New Riders
Publishing, Indianapolis, IL, USA, 2003.

[8] National Science Foundation. Women, minorities, and
persons with disabilities in science and engineering.
NSF Report, 04-317, 2004.

[9] J. Thatcher, P. Bohman, M. Burks, S. L. Henry,

B. Regan, S. Swierenga, M. D. Urban, and C. D.
Waddell. Constructing Accessible Web Sites. glasshaus
Ltd., Birmingham, UK, 2002.

[10] T. VanDeGrift, S. Burgstahler, R. E. Ladner, and
A. Poginy. The game of life workshop - reaching out to
high school students with disabilities. In Proc. of the
2006 ASEE Annual Conf. and Exposition, 2006.

