
Accessmonkey: Enabling and Sharing End User
Accessibility Improvements

Jeffrey P. Bigham
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195 USA

jbigham@cs.washington.edu

ABSTRACT
This paper proposes the Accessmonkey Framework for col-
laborative web accessibility improvement. The goal of the
system is to provide a common platform on which end users
and developers can create, share and use scripts that spec-
ify accessibility improvements. We propose browser plugins
that will automatically retrieve user scripts from a common
repository and apply helpful transformations to pages vis-
ited by users. End user interfaces will allow anyone to create
and share new improvements and developer interfaces will
allow content creators to edit and save changes scripts make
to web content. Accessmonkey seeks to enable those most
impacted by web accessibility challenges to directly and in-
dependently improve them. This work is being pursued with
close consultation and participation by blind web users.

1. INTRODUCTION
Efficient web access for blind users can be challenging.

When accessed using screen reader, information encoded vi-
sually is inaccessible, functionality requiring the use of the
mouse is unavailable, and complex or lengthy content lack-
ing semantic markup is inefficient to browse. We’ve shown
that blind users browse less efficiently as a result and avoid
content that is inaccessible [2].

Extensive research has explored the benefits of transform-
ing content to make it more accessible. These tools gener-
ally operate either fully automatically or as part of improved
developer tools. Comparatively little work has enabled end
users to independently improve content. Existing user and
developer tools could also benefit by enabling users to share
new improvement strategies, and by offering a convenient
mechanism by which third-party developers could extend
the diversity of existing user and developer tools. The Ac-
cessmonkey Framework seeks to address these shortcomings.

2. RESEARCH GOALS
The goals of the Accessmonkey Framework are threefold:

1. End User Improvement - Enable independent im-
provement of web content by those without program-
ming experience using an accessible interface designed
for end users.

2. Collaboration - Facilitate sharing of improvements
among both users and web developers. Provide a fo-
rum for users to help one another.

3. Common Platform - Provide a common platform
for accessibility improvement that will help improve-
ments reach end users. Technology for improving web
accessibility often languishes because no convenient,
widely-used platform exists for releasing it.

3. PROPOSED SOLUTION
The Accessmonkey Framework will provide 1) a common

platform for accessibility improvement, 2) end user inter-
faces that enable users to find, make and share improve-
ments to pages, 3) developer interfaces that enable devel-
opers to find, edit and incorporate accessibility improve-
ments into their pages, 4) browser plugins that perform
the specified accessibility improvements, and 5) a repository
where users can post and retrieve accessibility improvement
scripts. The illustration below shows a diagram of the pro-
posed system.

The Accessmonkey Framework will build on existing end
user programming tools, such as Greasemonkey [10], Koala
[7] and Keyword Commands [8], with added functionality
targeted at improving accessibility. Our system will address
two shortcomings of these tools: First, writing scripts to
improve accessibility with existing tools either requires pro-
gramming knowledge or requires the use of interfaces that
are not accessible. Second, sharing improvements is incon-
venient because each tool requires users to visit a separate
site and manually install scripts.

3.1 End User Improvement
We plan to develop interfaces that will enable blind web

users who are not programmers to improve the accessibility
of the web pages that they visit. Platypus [12] enables users
to create Greasemonkey scripts by visually selecting items
and then change their style, moving them elsewhere on the
page or deleting them entirely. Keyword Commands [8] al-



lows commands to be entered in pseudo-natural language
and Koala [7] further relaxes this syntax and operates in
the web domain. These extensions have limited non-visual
support and lack features specific to improving accessibility.

Our interface will allow end users to improve content with-
out programming. We are currently collecting many exam-
ples of the accessibility problems faced by blind users in
order to isolate the specific transformations that should be
supported by our tool. Users could, for instance, select text
(using either the keyboard or mouse or through a keyword-
based interface) and then specify that it should be a heading
of a particular level. As other examples, users could add skip
links or add list tags to information displayed as such. Fu-
ture functionality could allow users to assign semantic roles
to dynamic content from the ARIA [11] ontology or provide
roles to arbitrary content from an ontology designed to im-
prove accessibility [1, 13]. To develop our end user interface,
we will use a user-centered design methodology.

3.2 Finding Scripts
Our system will be designed to efficiently locate, install

and apply user-created scripts. Current user scripting tools
[10, 5, 7] do not automatically locate and apply scripts be-
cause the security of such scripts cannot be guaranteed.
Scripts that send private information to a remote site or
make other malicious changes are problems for social net-
working sites [6], and previous versions of Greasemonkey
were shown to be susceptible to similar exploits [10]. In-
stead, existing systems require users to manually find and
install scripts, offering a modest level of protection.

User scripts need to be powerful yet appropriately con-
strained to enable arbitrary users to contribute improve-
ments. We will limit and rigorously secure the operations
supported by our end user interfaces, and create a commu-
nity rating system to help users find the best scripts. More
advanced scripts that require more of the Javascript func-
tionality will be thoroughly vetted by the community before
being applied automatically.

4. PRELIMINARY RESULTS
We have introduced the common platform component of

Accessmonkey [4]. It extends Greasemonkey in two impor-
tant ways: 1) Changes that are made to pages can be saved
by developers in order to improve the original web page. 2)
The system is available on multiple browsers and platforms.

We also demonstrated how Accessmonkey scripts can im-
prove accessibility. Site- or page-specific scripts identify a
common template or page element and alter it to be more ac-
cessible. For example, content is rearranged so that impor-
tant information is read first and a dynamic menu is made
accessible using only the keyboard. General scripts apply
to all web pages. Our WebInSight script adds alternative
text to web images [3], our context-focused browsing script
emulates the Hearsay browser’s CSurf [9] and our headings
script automatically adds HTML heading tags.

5. FUTURE AND ONGOING WORK
We are currently conducting focus groups with blind web

users in order to study how to best create interfaces for se-
lecting and annotating content in a way that will attract
interest from the blind community, which will determine
the success of this approach. We will soon begin designing,

building and testing these interfaces. To identify the most
useful improvements that Accessmonkey should enable blind
users to provide, we are collecting examples of the accessi-
bility challenges confronted during the everyday browsing
of blind web users and isolating common problems. Finally,
we are preparing to release versions of Accessmonkey for the
Mozilla Firefox and Internet Explorer web browsers.

Further information can be found on our web page:
http://webinsight.cs.washington.edu/accessmonkey/

6. REFERENCES
[1] S. Bechhofer, S. Harper, and D. Lunn. Sadie: Semantic

annotation for accessibility. In Proc. of the Intl.
Semantic Web Conf. (ISWC ’06), 2006.

[2] J. P. Bigham, A. C. Cavender, J. T. Brudvik, J. O.
Wobbrock, and R. E. Ladner. WebinSitu: A
Comparative Analysis of Blind and Sighted Browsing
Behavior. In Proc. of the 9th Intl. ACM SIGACCESS
Conf. on Computers and Accessibility (ASSETS ’07),
2007.

[3] J. P. Bigham, R. S. Kaminsky, R. E. Ladner, O. M.
Danielsson, and G. L. Hempton. WebInSight: Making
Web Images Accessible. In Proc. of the 8th Intl. ACM
SIGACCESS Conf. on Computers and Accessibility
(ASSETS ’06), 2006.

[4] J. P. Bigham and R. E. Ladner. Accessmonkey: A
collaborative scripting framework for web users and
developers. In Proc. of the Intl. Cross-Disciplinary
Conf. on Web Accessibility (W4A ’07), 2007.

[5] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C.
Miller. Automation and customization of rendered web
pages. In Proc. of the ACM Symposium on User
Interface Software and Technology (UIST ’05), 2005.

[6] T. Jim, N. Swamy, and M. Hicks. Defeating script
injection attacks with browser-enforced embedded
policies. In Proc. of the 16th Intl. Conference on World
Wide Web (WWW ’07), pages 601–610, 2007.

[7] G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber,
and E. Kandogan. Koala: capture, share, automate,
personalize business processes on the web. In Proc. of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’07), pages 943–946, 2007.

[8] G. Little and R. C. Miller. Translating keyword
commands into executable code. In Proc. of the ACM
Symposium on User Interface Software and Technology
(UIST ’06), pages 135–144, New York, NY, USA, 2006.

[9] J. Mahmud, Y. Borodin, and I. Ramakrishnan. Csurf:
A context-driven non-visual web-browser. In Proc. of
the Intl. Conf. on the World Wide Web (WWW ’07),
pages 31–40, 2007.

[10] M. Pilgrim. Greasemonkey Hacks: Tips & Tools for
Remixing the Web with Firefox. O’Reilly Media, 2005.

[11] Roadmap for Accessible Rich Internet Applications
(WAI-ARIA Roadmap). World Wide Web Consortium,
http://www.w3.org/TR/WCAG20/. 2007.

[12] S. R. Turner. Platypus Firefox Extension.
http://platypus.mozdev.org/. 2007.

[13] Y. Yesilada, S. Harper, C. Goble, and R. Stevens.
Screen readers cannot see (ontology based semantic
annotation for visually impaired web travellers). In
Proc. of the 4th Intl. Conf. on Web Engineering (ICWE
’04), pages 445–458, 2004.


