
Accessmonkey: A Collaborative Scripting Framework for
Web Users and Developers

Jeffrey P. Bigham and Richard E. Ladner
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98115 USA

{jbigham|ladner}@cs.washington.edu

ABSTRACT
Efficient access to web content remains elusive for individ-
uals accessing the web using assistive technology. Previous
efforts to improve web accessibility have focused on devel-
oper awareness, technological improvement, and legislation,
but these approaches have left remaining concerns. First,
while many tools can help produce accessible content, these
tools are generally difficult to integrate into existing devel-
oper workflows and rarely offer specific suggestions that de-
velopers can implement. Second, tools that automatically
improve web content for users generally solve specific prob-
lems and are difficult to combine and use on a diversity of
existing assistive technology. Finally, although blind web
users have proven adept at overcoming the shortcomings of
the web and existing tools, they have been only marginally
involved in improving the accessibility of their own web ex-
perience.

As a first step toward addressing these concerns, we in-
troduce Accessmonkey, a common scripting framework that
web users, web developers and web researchers can use to
collaboratively improve accessibility. This framework ad-
vances the idea that Javascript and dynamic web content
can be used to improve inaccessible content instead of being
a cause of it. Using Accessmonkey, web users and develop-
ers on different platforms with potentially different goals can
collaboratively make the web more accessible. In this paper
we first present the Accessmonkey framework, describe three
implementations of it that we have created and offer several
example scripts that demonstrate its utility. We conclude
by discussing future extensions of this work that will provide
efficient access to scripts as users browse the web and allow
non-technical users be involved in creating scripts.

Categories and Subject Descriptors
K.4.2 [Social Issues]: Assistive technologies for persons
with disabilities; H.5.2 [Information Interfaces and Pre-
sentation]: User Interfaces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
W4A2007 - Technical Paper May 07–08, 2007, Banff, Canada. Co-Located
with the 16th International World Wide Web Conference.
Copyright 2007 ACM 1-59593-590-8/06/0010 ...$5.00.

General Terms
Design, Human Factors

Keywords
Accessmonkey, web accessibility, web scripting, web transcod-
ing, alternative text, Greasemonkey

1. INTRODUCTION
Efficient web access for users employing assistive technol-

ogy remains elusive because many web pages are designed
with inadequate regard for usability and accessibility con-
cerns [16]. This is particularly true for blind web users who
access the web using screen readers that present a web ex-
perience that is devoid of the rich visual structure that often
organizes information on the web. While web developers are
in the best position to resolve accessibility problems, they
are often ill equipped to do so effectively. Existing web stan-
dards, such as World Wide Web Consortium (W3C) Web
Content Accessibility Guidelines [11] and Section 508 of the
U.S. Rehabilitation Act, offer quantifiable rules to which
web developers can strive to adhere, but creating truly ac-
cessible content requires a more subtle and discerning evalu-
ation [26]. The accessibility of the web would not necessarily
be optimized even if web developers would follow established
web accessibility guidelines.

Despite efforts to promote accessible web development,
web developers often fail to implement even basic elements
of accessibility standards. For many web developers, a lack
of appropriate experience hinders their ability to adequately
judge the accessibility of web content, and even experienced
web developers may require more time to produce a visually
appealing web page that is also accessible [28]. Available
tools can help spot deviation from the easily quantifiable
portions of established standards, but they fail to adequately
guide developers through the process of creating accessible
content. Perhaps it should be unsurprising that, when faced
with a deadline to release new web content or when faced
with a daunting backlog of web pages to be updated, web
developers often delay a full consideration of accessibility.
Web developers need tools that can efficiently guide them
through the process of creating accessible web pages, and
blind users need tools that can help them overcome accessi-
bility problems even when developers fail.

In an effort to make the web independently accessible to
blind users, a number of projects have created systems that
capable of automatically transcoding documents in order to
render them more accessible [14, 20, 19, 17]. These tools

are potentially useful, but their utility is not maximized.
They either require web users to employ a specific browser
or platform or needed a host machine on which to run. The
transformations made by these tools help the web users that
use them, but are not easily utilized by web developers who
could often benefit from the same underlying technology for
automatic improvements. Finally, the opportunity for web
users to influence this technology or to independently sug-
gest new accessibility improvements is limited.

As a first step at addressing these concerns, we intro-
duce Accessmonkey, a scripting framework that helps web
users and web developers collaboratively improve the ac-
cessibility of the web. Accessmonkey helps web users au-
tomatically and independently transcode web content ac-
cording to their personal needs on a number of browsers
and platforms. Accessmonkey helps web developers lever-
age the same transcoding technology to more efficiently cre-
ate accessible content in a way that integrates into current
developer workflows. Many existing tools and systems ad-
dress accessibility problems, but they often require a specific
browser or require the user to install a separate tool. Often
these tools simply aren’t available to users and exist only as
proof-of-concept demos. When they are available, they can
be difficult for users to independently improve and difficult
for developers to integrate into existing tools. Accessmon-
key provides a convenient mechanism for sharing techniques
developed and insights gained. The framework allows both
web users and web developers to collaboratively improve the
accessibility of the web by leveraging the work of those that
have come before them. Users can effect the accessibility
of the web by writing a script and other users can immedi-
ately use and adapt the script to fit their own needs. Web
developers can use the script to improve the accessibility of
their web pages automatically, reducing the job of provid-
ing accessibility information to a more efficient editing and
approval task. To allow as many users as possible to utilize
our framework, we offer several implementations of it that
work on multiple platforms and in multiple web browsers.

In this paper, we consider a number of examples that
demonstrate how the Accessmonkey framework allows both
web users and web developers to benefit from the same un-
derlying script. We first considered how to adapt techniques
for automatically supplying alternative text for web images
presented in previous work [14] to assist both web users and
developers. The system was originally designed to assist web
users, but web developers could also utilize the underlying
technology to more efficiently provide alternative text for
images on the web pages that they create. Implementing
WebInSight as an Accessmonkey script allows users to run
WebInSight either in a client mode that transparently in-
serts alternative text or in a developer mode that suggests
proposed changes and allows the web page to be saved. We
also implement scripts for context-driven web browsing, for
personalizing web pages according to the needs of users and
for making inaccessible dynamic content accessible. These
scripts are described in more detail in Section 4.

The contributions of our work include the following:

1. We describe how Javascript and dynamic content can
be used for accessibility improvement.

2. We introduce a framework for designing scripts that
enables web users and web developers to utilize the
same underlying technology and avoid duplicating work.

3. We demonstrate that Accessmonkey scripts are power-
ful enough to implement a number of automatic acces-
sibility improvements, including a version of WebIn-
Sight for both web users and web developers.

4. We reimplement several previous systems designed to
improve accessibility as Accessmonkey scripts. These
systems can now be used on more web browsers and
platforms by both web users and developers.

2. RELATED WORK
Automatically transcoding web content to better support

the needs of web users has been a popular topic in web acces-
sibility research for almost a decade, especially in relation to
improving access for blind web users. Several systems have
been developed that allow web users to arbitrarily transcode
web content via scripting and were motivated in part by web
accessibility. Accessmonkey seeks to allow both web users
and web developers to collaboratively create scripts that di-
rect the automatic transcoding of web content in a way that
helps both groups of users efficiently increase web accessi-
bility.

2.1 Scripting Frameworks
Greasemonkey was introduced in 2003 by Mark Pilgrim.

The project was partially motivated by a desire to provide
web users with the ability to automatically transcode web
pages into a form that is more accessible. Several exam-
ples of such scripts are offered in the book Greasemonkey
Hacks [29]. NextPlease! is an example of a Greasemon-
key script that has become quite popular among blind web
users [35]. This script allows web users to define key com-
binations that simulate clicks on links that contain user-
defined text strings. Currently, to implement similar func-
tionality in their own web pages, web developers cannot di-
rectly leverage the code changes made by users of a script
like NextPlease! and, instead, must independently decdie on
these changes. Accessmonkey extends the original idea be-
hind Greasemonkey by providing a mechanism by which web
users who write scripts can also make their scripts useful to
web developers. We also provide a web and proxy imple-
mentation of Accessmonkey that opens the system to use
by additional users.

Scripts designed to automatically improve accessibility are
already available as Greasemonkey scripts. Popular existing
user scripts include those for automatically detecting and re-
moving distracting ads and those that add new functionality
to popular web sites like google.com and hotmail.com. Oth-
ers automatically add accessibility features to web pages.
Often these scripts present solutions that web developers
could have included (support for access keys, proper table
annotation, etc.), while others address problems that apply
to particular subsets of a web pages visitors (high-contrast
colors, larger fonts, etc.). Some of the most popular scripts
are those that add access keys to popular web sites and those
that adapt web pages to be easier to view by people with
low vision. A large repository of Greasemonkey scripts is
available at userscripts.org, including 49 scripts targeted at
accessibility. These scripts alter pages in ways that users
have found helpful, such as adding heading tags (<h2>) to
the Google results page. Many scripts are available, which
suggests that a number of individuals are willing to write
such scripts and that many web users find them useful.

Another web scripting framework is Chickenfoot, which
allows users to programmatically manipulate web pages us-
ing a superset of Javascript that includes methods specific
to web browsing [15]. The interface of Chickenfoot is de-
signed to make web page manipulation easier, although it
still requires some level of programming knowledge. Platy-
pus, another Firefox extension, seeks to remove this require-
ment as well by providing an interface that allows users to
manipulate the content of web pages by simply clicking on
items [33]. Neither of these systems offers a mechanism that
allows users to save altered web pages, but both could be a
useful as a way to allow users to more easily create scripts.

2.2 Accessibility Evaluation
The automatic evaluation of the accessibility of web pages

has been a popular topic in both research and industry, and
has resulted in the availability of many evaluation tools [4,
9, 1, 8]. Most of these tools have focused on assisting devel-
opers in meeting quantifiable accessibility standards, such
as the W3C Web Content Accessibility Guidelines [11] or
Section 508 of the U.S. Rehabilitation Act. The research
community has sought to extend the capabilities of evalua-
tion tools to allow for the automatic detection of more subtle
usability and accessibility concerns [21], but tools that can
do this well have yet to be developed. Mankoff et al. noted
that an effective method for identifying accessibility prob-
lems in a web page is to have it reviewed by multiple web
developers using a screen reader, but that blind web users
could effectively detect subtle usability problems [26]. Ac-
cessmonkey allows both groups to collaboratively assist in
the evaluation and remediation of web content, but neither
group must rely on members of the other before accessibility
improvements can be implemented.

2.3 Automatic Accessibility Improvement
Previous work has explored both automatically improving

the accessibility of web pages and creating design tools that
will facilitate the production of accessible content by web
developers. To take advantage of these systems, content has
generally needed to be processed by the web developer using
a specialized tool, displayed using a specialized web browser
[31], or transcoded for users on-the-fly. A number of systems
have explored automatically transcoding documents in order
to positively effect accessibility [19, 20, 17, 14].

Harper et al. suggested three alternative approaches for
implementing the transcoding of documents in the context
of making browsing more efficient for blind users by support-
ing content preview by probing [17]. The authors proposed
that transcoding could be implemented in a browser exten-
sion or plug-in, as Javascript added to a web page or in a
proxy or web server. In this work, the option to transcode
documents using a proxy was chosen and a number of sys-
tems have chosen this strategy for similar reasons [20, 14,
34]. The authors discounted using a browser extension or
plug-in because of the need to create and support several
implementations to reach web users employing different web
browsers on different platforms.

Using Javascript to transcode content was not chosen be-
cause, at the time, many of the web browsers and screen
readers used by blind users did not offer adequate support
for Javascript. The choice to transcode documents at the
proxy level, however, acts as a potential bottleneck, is less
private and is potentially less customizable. Using a browser

plugin, as other systems have done [18, 35], limits the audi-
ence to those using a particular web browser. Accessmonkey
uses Javascript to transcode pages and allows scripts written
for it to be used on many different platforms and in many
different browsers. Users can personalize what selection of
available transcoding services they would like to apply to
web pages that they view and can also write or modify their
own scripts. The most recent versions of popular screen
readers offer adequate Javascript support [6, 7].

Implementing transcoders as scripts also has the potential
to make extending the techniques that they encompass to
web development tools easier. While several systems have
suggested that techniques used to automatically transcode
documents could also be used to help web developers more
easily create accessible content [8, 34], this process has often
been difficult to directly integrate into existing developer
tools. Accessmonkey allows scripts to be written once and
included in a variety of tools used by both web users and web
developers. To our knowledge this is the first example of a
system that unifies the automatic accessibility improvement
targeted at web users and web developers in an extensible
way.

Despite the similarity in the underlying technology, little
work has been devoted to assisting web developers in auto-
matically improving the content of their web pages through
specific suggestions. Many tools used for evaluation display
general advice about how to rectify problems that are dis-
covered [5, 4, 1], but a web developers must still be skilled
in accessibility to correctly act on this advice. The guid-
ance provided is usually general and is often drawn from the
standard against which the tool is evaluating the web page.
A-Prompt, for example, guides web developers through the
process of fixing accessibility problems. Related systems
have been designed to assist users in annotating web con-
tent for the semantic web [12] and Plessers et al. showed
how such annotations could be automatically generated as
a direct result of the web design process [30]. Accessmonkey
scripts can utilize the same technology used to assist web
users to help web developers.

2.4 WebInSight
WebInSight improves the accessibility of web images by

automatically deriving alternative text [14]. This system
was shown to be capable of automatically providing labels
for 43.2% of web images that originally lacked alternative
text with high accuracy by using the title of the linked page
for linked images and by applying optical character recogni-
tion (OCR) to the images that contained text. WebInSight
was originally developed for web users, but it quickly be-
came apparent that the system could easily be adapted to
assist web developers in the task of choosing appropriate
alternative text. Many available accessibility tools inform
web developers when images lack alternative text, but few
suggest alternative text or automatically judge the quality
of the alternative text already provided.

A system for web developers could make appropriate sug-
gestions for alternative text by using techniques developed
for WebInSight. Both ALTifier [34] and A-Prompt [1] used
heuristics to perform a similar function for developers, but
the WebInSight system is able to do so more accurately.
The system also leverages a supervised learning model built
from contextual features in order to identify alternative text
that is likely to be incorrect [13]. The ability to automati-

Figure 1: Accessmonkey allows web users, web de-
velopers and systems for automated accessibility im-
provement to collaboratively improve web accessi-
bility.

cally judge the quality of alternative text could potentially
improve the user experience by eliding alternative text that
is likely to be inappropriate. Using the WebInSight Ac-
cessmonkey script, web developers are not only told that an
image lacking alternative text should be supplied it, but also
whether the alternative text provided is likely to be correct.

3. ACCESSMONKEY FRAMEWORK
The framework exported by the Accessmonkey system al-

lows users to edit web pages using Javascript. The Grease-
monkey Firefox extension [2] is one of the most success-
ful examples of an open scripting framework and exposes
the framework from which Accessmonkey is derived. The
Greasemonkey extension allows users to inject their own
scripts into arbitrary web pages and these scripts can then
alter web pages automatically. The main difference between
Accessmonkey and Greasemonkey is that Accessmonkey na-
tively supports web developers by providing a mechanism for
web developers to edit, approve and save changes that have
been made to web pages by user scripts. Figure 1 shows the
relation between the components that use the Accessmonkey
framework.

Accessmonkey is designed to support multiple implemen-
tations which may be placed on a remote server, on the user’s
computer or directly integrated into web tools. Accessmon-
key scripts can be used in different browsers and on different
platforms because of the near ubiquity of Javascript. While
Greasemonkey is only available on Mozilla web browsers,
other major web browsers, such as Internet Explorer, Sa-
fari and Opera, already afford similar capabilities and can
often run Greasemonkey scripts unaltered. Incapability con-
cerns remain because of differences between the implemen-
tations of the ECMAscript standard (commonly known as
Javascript) used by different browsers. The primary imple-
mentations of ECMAScript are JScript as implemented by
Internet Explorer and Javascript as implemented by other
popular browsers, including Firefox and Safari. Despite

these limitations, web developers are accustomed to writing
scripts that are compatible with the different implementa-
tions of ECMAScript.

Many web browsers and screen readers do not work well
with Javascript code, and some ignore it altogether. These
browsers are currently left out. For example, web browsers
that cannot be updated (such as those used by some PDAs)
may not be capable of handling Javascript scripting, such
browsers are likely to contain have this capability in the
future. We believe that the amount of web content cur-
rently available that utilizes Javascript will encourage this
to change, but we are currently investigating an implemen-
tation of Accessmonkey capable of altering web pages on a
remote server before delivering the content to the web user.
The scripts presented in this paper have been tested with
Window-Eyes 6.0 [6].

Accessmonkey gives users the option of running solely on
the client side, as opposed to systems that are designed to
run on a remote server. A disadvantage of our approach
is that Javascript limits the space of possible transcoding
operations that can be performed, but, as shown in Sec-
tion 5, many of the transcoding operations that have been
previous suggested can be achieved using Javascript only.
Furthermore, as we discuss in Section 6, future versions of
Accessmonkey may allow Java code to be bundled with Ac-
cessmonkey scripts in order to enhance their functionality.

3.1 Writing Scripts
An Accessmonkey script shares its structure with a Grease-

monkey script but relies on additional functionality pro-
vided by an Accessmonkey implementation. Greasemonkey
scripts can be run unaltered in Accessmonkey implementa-
tions. Figure 2 shows that Accessmonkey scripts are a spe-
cific subset of possible Greasemonkey scripts, which are, in
turn, a subset of all Javascript scripts. Accessmonkey scripts
are expected to provide a mechanism for users to view, edit
and approve changes that are automatically made by the
script when appropriate and rely on functionality exposed
by the Accessmonkey implementation to facilitate this. Ac-
cessmonkey differentiates two modes of operation: a user
mode in which changes are automatically made to a page
and a developer mode in which users are provided an inter-
face that allows them to edit, approve and save automatic
changes. A script can query the implementation in which
it is running to determine the mode that is currently acti-
vated and to obtain a pre-defined area in which the script
can place its developer interface. The implementation pro-
vides functionality that coordinates which script’s developer
interface should be displayed and allows changes that have
been made to the web page to be saved.

To write a script, a user must be able to write Javascript
code, but any user can use an existing script. Future versions
of this tools will include a mechanism to help users locate
applicable scripts. We also plan to explore ways of enabling
users who are not technically savvy to create scripts (see
Section 6).

3.2 Requirements
An Accessmonkey implementation requires only a few el-

ements. First, the implementation must have the capa-
bilities of Greasemonkey. Specifically, it must be able to
load a web page, add custom Javascript to it and execute
this Javascript. The implementation must provide the stan-

Figure 2: Accessmonkey scripts are a subset
of Greasemonkey scripts which are a subset of
Javascript scripts.

dard Greasemonkey API [29] and two additional methods
required for Accessmonkey features. The first method re-
turns a Boolean value indicating whether the system is in
developer mode or user mode, which allows user scripts to
appropriately alter their presentation and editing options.
The second method returns a reference to a div element
that represents the script’s development area. The script
may append elements to this element to form its developer
interface. This interface supports the user in viewing, edit-
ing and approving changes automatically suggested by the
script. Each implementation must also provide a mechanism
for saving changes that were made to the web page by the
user. Figure 3 shows an implementation of Accessmonkey
running a script. The select boxes and buttons at the top of
developer interface displayed in this screenshot allow users
to switch the tool that is currently being applied, switch us-
age modes, and save changes that have been made to the
web page by the script.

3.3 Developer Workflow
An important consideration for the usability of our sys-

tem is how it will fits into the workflow of web developers.
We hope to address one of the main shortcomings of ac-
cessibility tools cited by developers, which is their inability
to integrate well into current developer workflows [21]. De-
signing a tool that easily integrates into the wide diversity
of products used by developers is impractical, but the im-
plementations provided allow our system to be immediately
available to web developers. Accessmonkey integrates into
the developer workflow by first allowing developers to make
and edit potential changes to the document and then pro-
viding a mechanism for the developer to save changes.

Current implementations will allow many web develop-
ers will be able to use the system immediately, but web
pages that are generated in a dynamic way using underly-
ing data sources and web page templates will be unable to
leverage the system. Developers of such systems will still
benefit because Accessmonkey stresses the importance of
providing suggestions in addition to identifying problems.
Ideally, the system would be implemented directly into the
tools already used by web developers. The simple and open
scripting framework exposed by Accessmonkey allows users
to develop such implementations that more closely integrate
into these tools. Our current implementations still requires
an external program for accessibility improvement, but pre-

vious work has shown that an improved workflow that still
involves the use of several applications can nevertheless dra-
matically increase efficiency [23].

4. IMPLEMENTATIONS
Users employ a variety of web browsers on a number of

platforms, and, similarly, web developers use a number of
development tools, many of which are proprietary. Access-
monkey should be easy to integrate into these tools. The de-
cision to implement Accessmonkey as a scripting framework
using Javascript allows for a number of implementations to
be developed because many platforms already contain sup-
port for Javascript.

Creating implementations of Accessmonkey that integrate
directly into all possible tools used by users and develop-
ers is impractical. Instead, Accessmonkey provides a sim-
ple framework which can be extended to other tools and
platforms by users. We have created three implementations
of Accessmonkey that cover a wide variety of use cases: a
Firefox extension, a stand-alone web page, and a web proxy.
Web users and developers can access the full range of Access-
monkey functionality by using any of these implementations.
In future work, we plan to create implementations of Ac-
cessmonkey that are directly integrated into additional web
browsers and web development tools. To support browsers
incapable of running Javascript code, we also plan to explore
a proxy-based implementation that can apply user scripts to
a web page before forwarding the transcoded page to users.

4.1 Firefox Extension
The Firefox Extension implementation is a straightfor-

ward adaptation of the existing Greasemonkey extension,
which was the motivation for Accessmonkey and already
provides much of the required functionality. To allow the ex-
tension to fully support Accessmonkey scripts, we enhanced
the extension by adding the Accessmonkey-specific meth-
ods described earlier in Section 3.1 and added a toggle that
allows users to switch between user and developer mode. Fi-
nally, we added the ability to save changes that were made
to the web page. A screenshot of the resulting system is
shown in Figure 3.

4.2 Web Proxy
The web proxy implementation of Accessmonkey is imple-

mented as an Apache module. In proxy mode, this module
simply inserts a script containing the Accessmonkey code
into each web page that a user visits. Disadvantages of
proxy-based approachs were discussed previously in Section
2.3, but for some users it is the most viable option because
it does not require Firefox. Currently, the administrator
of the proxy is responsible for adding new user scripts, al-
though future versions may allow users to upload scripts
and have them immediately included in their suite of Ac-
cessmonkey scripts. Eventually, we would also like to offer
a proxy-based solution that processes web pages on the fly
according to user scripts as the user browses the web.

For security reasons, some methods in the Greasemonkey
API do not have direct analogies in Javascript. The Grease-
monkey method used to retrieve the content of an arbitrary
URLs is useful for allowing scripts to include information de-
rived from web services or integrated from other web sites.
For security reasons, the analogous Javascript functional-
ity is restricted to retrieving content from the same do-

Figure 3: A screenshot of the WebInSight Accessmonkey script in developer mode applied to the homepage
of the International World Wide Web Conference. This script helps web developers discover images that are
assigned inappropriate alternative text (such as the highlighted image) and suggests appropriate alternatives.
The developer can modify these suggestions, as was done here, to produce the final alternative text.

main as where the script is located. To allow Accessmonkey
scripts running in this implementation to incorporate data
not available on the original domain of the web page, this
implementation allows scripts to request the content of any
URL from the proxy, which effectively anonymizes these re-
quests. To avoid abuse, the proxy implementation limits use
of the system to registered users.

4.3 Web Page
Several popular evaluation tools are web-based [4, 9, 10].

Visitors to these web sites can enter the URL of a web page
that they would like to evaluate and the tools will analyze it.
Such tools are convenient because they don’t require users
to install additional software and can be accessed from any-
where. Because the evaluation is done remotely, these tools
require the web page to be publicly available and, therefore,
may be inappropriate for accessibility evaluation of private
or pre-release web pages. To allow users of our system ad-
ditional flexibility, we have created a web-based version of
Accessmonkey.

Our web implementation of Accessmonkey requires a browser
that supports Javascript, but requires the user to neither use
a specific browser nor install an extension, which opens Ac-
cessmonkey scripts to potential users that prefer Internet
Explorer, Opera or another web browser. This implemen-
tation allows a large portion of web users and developers to
use Accessmonkey scripts.

Our web page version of Accessmonkey is implemented
using a variation on the module for the Apache Web Server
that we developed for our proxy implementation. When

users visit the Accessmonkey web page they are first asked
for a URL. The system then fetches that URL and alters
the page returned in a way that allows it to be displayed
at a local address. All of the URLs in each web page are
automatically translated into fully qualified URLs that are
directed through the proxy. This Accessmonkey implemen-
tation uses the same techniques for producing the full Ac-
cessmonkey API that were required in the proxy implemen-
tation discussed previously.

4.4 Future Implementations
Future implementations will allow more web users and

developers to use Accessmonkey on more platforms. Turn-
about is a plug-in for Internet Explorer that is similar to
Greasemonkey and allows user-defined scripts [3]. It could
be modified to provide the added functionality required of an
Accessmonkey implementation. We would also like to add
the capability of running Accessmonkey scripts directly in
web development tools. SeaMonkey Composer and Adobe
Dreamweaver are attractive options because they already
support Javascript, although we would like to eventually cre-
ate Accessmonkey implementations for other popular tools,
such as Microsoft FrontPage.

5. IMPLEMENTED SCRIPTS
We have implemented several scripts for our system that

demonstrate the usefulness of the Accessmonkey architec-
ture. Our current implementations are both strengthened
and limited by their restriction of only using Javascript. Re-

stricting our scripts to Javascript allows them to be easily
extended to many other platforms, but comes at the cost
of accepting the limitations Javascript. For instance, our
scripts cannot gain pixel-level access to images. One method
of circumventing this limitation is to utilize web services, as
we did for our WebInSight script so that it could access
OCR functionality. In this section, we further demonstrate
the diversity of powerful transformations that can be accom-
plished using Accessmonkey and how they can be leveraged
by both web users and developers.

5.1 WebInSight Script
The inspiration for Accessmonkey came from our desire to

allow web developers to leverage the technology developed
for WebInSight (described in Section 2.4) to make the cre-
ation of accessible web pages easier. Our belief is that web
developers would be more likely to create accessible content
if they are given specific suggestions on how to do so instead
of being forced to go it alone. Our WebInSight Accessmon-
key script is an example of such an approach.

A screenshot of the Accessmonkey system running the We-
bInSight script is shown in Figure 3. The developer interface
provides web developers with functionality to quickly ap-
prove and edit the alternative text assigned to each image
in the page. To assist in this process, the system provides
several automatically-computed suggestions for appropriate
alternative text that web developers can select with a single
click after optionally editing the suggestion.

The script automatically computes all suggestions, except
for the OCR suggestion, which is retrieved from a web ser-
vice. Each suggestion is automatically evaluated by the sys-
tem and the best suggestion is always displayed in the low-
est text box. The interface allows developers to skip images
that are unlikely to be informative and assign these images
a zero-length alternative text. The system does not provide
developers with a button that automatically applies alterna-
tive text to all images because the system’s suggestions are
not always correct. Following the spirit of Accessmonkey,
blind web users can also utilize this script. In user mode the
script simply inserts the best alternative text for each im-
age directly into the page, although users are provided the
option to preface each inserted alternative text label with a
string indicating that it was automatically generated.

5.2 Context-Centered Web Browsing
Mahmud et al. introduced a context-driven method called

CSurf for browsing the web that they showed to be much
more efficient than browsing with a traditional screen reader
[25]. The increased efficiency of this method is derived from
its ability to automatically direct users to relevant content,
instead of requiring them to read a web page starting at
the beginning, as is common in most screen readers. When
using the system, users are directed to content related to
links that they have followed. The text of a link is likely
similar to the content in which they are interested. The
system calculates where in the web page to begin reading
by choosing the section of the web page that contains con-
tent most similar to the text of the link that was followed.
This enhanced functionality is expected to be included in
the Hearsay browser [31].

We have implemented a variation of this accessibility im-
provement as an Accessmonkey script. On every web page,
the system first adds an onclick event to each anchor tag on

the page. When a user clicks on a link, the text of the link
is recorded. When a new page is loaded, the script checks
to see if it occurred as a result of the user clicking a link. If
so, it then finds the DOM element of the page that is most
similar to the text of the clicked link using a simple word-
vector comparison. The focus of the web page is changed
to the identified DOM element, which allows modern screen
readers to begin reading at that location. The system also
assists web developers in setting skip links, which are links
at the beginning of a web page that are visually hidden but
provide a mechanism to screen reader users to skip to the
main content area of a web page. This Accessmonkey script
detects content on the web page that is likely to be relevant,
highlights the identified area and adds the skip link if it is
approved by the user. While this script cannot perform the
full machine learning and semantic analysis that is done in
CSurf, it allows this powerful technique to be used by users
immediately with the tools they already own.

5.3 Personalized Edge Services
Iaccarino et al. outlined a number of edge services that

transcoded web content into a form that better suited the
personal needs of web users [20]. Accessmonkey provides
an ideal framework in which to implement these edge ser-
vices and we have replicated many of them as Accessmonkey
scripts. The original intent of the edge services was to pro-
vide web users with disabilities options for personalization.
By implementing them as Accessmonkey scripts, web devel-
opers can leverage them as well. Although many of these
services are not appropriate for all users, web developers
may employ them to produce alternative views for specific
audiences.

We have replicated many of these edge services as Access-
monkey scripts, including services that replace all images in
a page with links to the image, delete the target attribute
from all anchor tags and add access keys to all links. Such
improvements can make the web more accessible to certain
individuals. These scripts can also be used by web develop-
ers, although, because of the nature of the transformations
applied, they may be best used to help create alternative
versions of a web page rather than used to create a univer-
sally accessible version.

5.4 Site-Specific Scripts
Many useful accessibility improvements cannot yet be im-

plemented in a general way that will apply to multiple web
sites. Such scripts can reorganize a site’s layout, add accessi-
bility features, or improve the accessibility dynamic content.
We have implemented several scripts that demonstrate the
dramatic improvements that can be made by Accessmon-
key scripts targeted at specific sites. For example, the web
page of a popular online retailer contains menubar at the
top listing the major categories of products that they sell,
organized in a tree. This menubar (and the elements con-
tained within it) are inaccessible because they require the
use of a mouse. We wrote an Accessmonkey script that
allows the same content to be accessed via keyboard com-
mands (see Figure 4). In this example, the menu content is
available to screen reader users, but is not efficiently con-
veyed to them. Figure 5 demonstrates another example of
a site-specific script that, in this case, removes distracting
ads and places the main content of the page closest to the
top in reading order.

Figure 4: The menubar of this online retailer is inaccessible due to its reliance on the mouse. To fix this
problem we wrote an Accessmonkey script that makes this menu accessible from the keyboard.

The content that the scripts in this section modify already
exists on the page, and, therefore, blind web users could po-
tentially conduct these transformations independently. This
is in contrast to the content in images or Flash content which
is more difficult to access. While figuring out how to cre-
ate a script that will improve accessibility may take time,
the user will benefit from these improvements on subsequent
visits to the page. These improvements could be leveraged
by other web users visiting the page and, perhaps, even the
web developers responsible for creating it. Javascript is a
powerful mechanism for transcoding content and we are ex-
ploring how users can more easily discover and apply these
scripts.

6. DISCUSSION & FUTURE WORK
Accessmonkey provides a common framework for web users,

web developers, and web researchers to share automatic ac-
cessibility improvements. To facilitate this collaboration, we
plan to create an online repository where such scripts can
be posted and shared. We also plan to explore methods for
enabling users to easily locate and, perhaps automatically,
install scripts from this repository. For example, users could
arrive at a news site to which they have not been before and
be immediately greeted with the possibility of jumping di-
rectly to the content, navigation or search areas of the page.

Creating an Accessmonkey script currently requires a knowl-
edge of Javascript programming. The Platypus Firefox ex-
tension allows users to create scripts for Greasemonkey by
clicking and dragging elements with the mouse [33]. The
extension contains keyboard support, but it still relies on
visual feedback to alter content. Chickenfoot is a keyword-
based system that allows users to naturally create simple
scripts that might also be able to be extended to improve
accessibility [24]. Other work has explored programming-
by-demonstration methods for automating web tasks, such
as Web Macros [32], PLOW [22], and Turquoise [27]. We
are exploring methods targeted at providing similar func-
tionality to web users for creating Accessmonkey scripts in
a way that does not require using Javascript or a specific
input device.

The transformations that current Accessmonkey scripts
can achieve are currently limited by the Javascript program-
ming language. While Javascript is more than adequate for

achieving many transformations, more complex transforma-
tions often require the availability specialized libraries for
natural language processing or image manipulation that are
currently not available in Javascript and that would be diffi-
cult to implement in this arena. Accessmonkey scripts cur-
rently rely on web services for this advanced functionality,
but a better solution may be for scripts to use supplemen-
tary libraries. We will explore both adding commonly-used
functionality to Accessmonkey implementations and allow-
ing user scripts to bundle Java code libraries. The imple-
mentations that we have provided already support calling
Java code from Javascript and, so, a main challenge is to pro-
vide a standardized method for users to include such code
along with their scripts and supporting such bundles in a
variety of Accessmonkey implementations.

7. CONCLUSION
We have introduced Accessmonkey, a common scripting

framework inspired by Greasemonkey that allows both web
users and web developers to write and utilize Javascript
scripts to automatically improve web accessibility. We have
shown how implementations of our system can be created
that run in a variety of platforms including as a Firefox
extension and on a web page. We have converted our We-
bInSight system for automatically generating and inserting
alternative text into web pages into an Accessmonkey script
that allows both web users and web developers to use the
technology built into WebInSight in order to improve the
accessibility of web images. We have reimplemented sev-
eral existing systems for automatically improving web pages,
which renders these systems available on more platforms and
allows them to more easily be utilized by web developers.
We have also demonstrated that dynamic content can be
made accessible on a per-site basis. Finally, we have shown
that dramatic changes are possible by reconfiguring pages
with Javascript and have discussed how users might easily
create and use this functionality in the future.

8. ACKNOWLEDGMENTS
This research was funded by National Science Founda-

tion grant IIS-0415273 and a software grant by GW Micro.
We thank Oscar Danielsson, Gordon Hempton and Ryan

Figure 5: This script moves the header and navigation menus of this site to the bottom of the page, providing
users with a view of the web page that presents the main content window first in the page.

Kaminsky for their contributions to the original WebInSight
system and thank Sangyun Hahn and T.V. Raman for their
insights and guidance. Finally, we would like to thank our
anonymous reviewers for their insightful comments and sug-
gestions.

9. REFERENCES
[1] A-Prompt. Adaptive Technology Resource Centre

(ATRC) and the TRACE Center at the University of
Wisconsin. http://www.aprompt.ca/.

[2] Greasemonkey Firefox extension.
http://greasemonkey.mozdev.org/.

[3] Turnabout. Reify Software.
http://www.reifysoft.com/turnabout.php.

[4] Watchfire Bobby.
http://www.watchfire.com/products/webxm/bobby.aspx.

[5] Firefox accessibility extension, 2006. Illinois Center for
Information Technology.

[6] GW Micro Window-Eyes, 2006.
http://www.gwmicro.com/Window-Eyes/.

[7] JAWS 8.0 for windows. Freedom Scientific, 2006.
http://www.freedomscientific.com.

[8] Lift. UsableNet, 2006. http://www.usablenet.com/.

[9] W3C markup validation service v0.7.4, 2006.
http://validator.w3.org/.

[10] Web accessibility checker. University of Toronto
Adaptive Technology Resource Centre (ATRC), 2006.
http://checker.atrc.utoronto.ca/.

[11] Web content accessibility guidelines 2.0 (wcag 2.0).
World Wide Web Consortium, 2006.
http://www.w3.org/TR/WCAG20/.

[12] S. Bechhofer, C. Goble, L. Carr, S. Kampa, W. Hall,
and D. De Roure. Cohse: Conceptual open
hypermedia service. Frontiers in Artifical Intelligence
and Applications, 96, 2003.

[13] J. P. Bigham. Increasing web accessibility by
automatically judging alternative text quality. In
Proceedings of the 12th international conference on
Intelligent user interfaces (IUI ’07), New York, NY,
USA, 2007. ACM Press.

[14] J. P. Bigham, R. S. Kaminsky, R. E. Ladner, O. M.
Danielsson, and G. L. Hempton. Webinsight: Making
web images accessible. In Proceedings of 8th
International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’06), October
2006.

[15] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C.
Miller. Automation and customization of rendered
web pages. In Proceedings of the 18th User Interface
Software and Technology, 2005.

[16] D. R. Commission. The web: Access and inclusion for
disabled people. The Stationary Office, 2004.

[17] S. Harper, C. Goble, R. Stevens, and Y. Yesilada.
Middleware to expand context and preview in
hypertext. In Proceedings of the 6th international
ACM SIGACCESS conference on Computers and
accessibility (ASSETS ’04), pages 63–70, 2004.

[18] S. Harper and N. Patel. Gist summaries for visually
impaired surfers. In Proceedings of the 7th
international ACM SIGACCESS conference on
Computers and Accessibility (ASSETS ’05), pages
90–97, New York, NY, USA, 2005. ACM Press.

[19] A. W. Huang and N. Sundaresan. A semantic
transcoding system to adapt web services for users
with disabilities. In Proceedings of the fourth
international ACM conference on Assistive
technologies (Assets ’00), pages 156–163, New York,
NY, USA, 2000. ACM Press.

[20] G. Iaccarino, D. Malandrino, and V. Scarano.
Personalizable edge services for web accessibility. In
Proceedings of the 2006 international
cross-disciplinary workshop on Web accessibility
(W4A ’06), pages 23–32, New York, NY, USA, 2006.
ACM Press.

[21] M. Y. Ivory. Automated Web Site Evaluation
Reseachers’ and Practitioners’ Perspectives. Kluwer
Academic Publishers, 2003.

[22] H. Jung, J. Allen, N. Chambers, L. Galescu, M. Swift,
and W. Taysom. One-shot procedure learning from
instruction and observation. In Proceedings of the
International FLAIRS Conference: Special Track on
Natural Language and Knowledge Representation.

[23] R. E. Ladner, M. Y. Ivory, R. Rao, S. Burgstahler,
D. Comden, S. Hahn, M. Renzelmann, S. Krisnandi,
M. Ramasamy, B. Slabosky, A. Martin, A. Lacenski,
S. Olsen, and D. Groce. Automating tactile graphics
translation. In Proceedings of the Seventh
International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’05), pages
50–57, New York, NY, 2005. ACM Press.

[24] G. Little and R. C. Miller. Translating keyword
commands into executable code. In UIST ’06:
Proceedings of the 19th annual ACM symposium on
User interface software and technology, pages 135–144,
New York, NY, USA, 2006. ACM Press.

[25] J. Mahmud, Y. Borordin, and I. Ramakrishnan. Csurf:
A context-driven non-visual web-browser. In
Proceedings of the International Conference on the
World Wide Web (WWW ’07).

[26] J. Mankoff, H. Fait, and T. Tran. Is your web page
accessible?: a comparative study of methods for
assessing web page accessibility for the blind. In
Proceedings of the SIGCHI conference on Human
factors in computing systems (CHI ’05), pages 41–50,
New York, NY, USA, 2005. ACM Press.

[27] R. C. Miller and B. Myers. Creating dynamic world
wide web pages by demonstration, 1997.

[28] H. Petrie, F. Hamilton, and N. King. Tension, what
tension?: Website accessibility and visual design. In
Proceedings of the international cross-disciplinary
workshop on Web accessibility (W4A ’04), pages
13–18, New York, NY, USA, 2004. ACM Press.

[29] M. Pilgrim, editor. Greasemonkey Hacks: Tips &
Tools for Remixing the Web with Firefox. O’Reilly
Media, 2005.

[30] P. Plessers, S. Casteleyn, Y. Yesilada, O. D. Troyer,
R. Stevens, S. Harper, and C. Goble. Accessibility: a
web engineering approach. In Proceedings of the 14th
international conference on World Wide Web (WWW

’05), pages 353–362, New York, NY, USA, 2005. ACM
Press.

[31] I. Ramakrishnan, A. Stent, and G. Yang. Hearsay:
Enabling audio browsing on hypertext content. In
Proceedings of the 13th International Conference on
the World Wide Web (WWW ’04), 2004.

[32] A. Safonov. Web macros by example: users managing
the www of applications. In CHI ’99 extended abstracts
on Human factors in computing systems (CHI ’99),
pages 71–72, New York, NY, USA, 1999. ACM Press.

[33] S. R. Turner. Playtpus firefox extension, 2006.
http://platypus.mozdev.org/.

[34] M. Vorburger. Altifier: Web accessibility enhancement
tool, 1999.

[35] H. Wang. Nextplease!, 2006.
http://nextplease.mozdev.org/.

